Skill Building
In Problems 1–42, use calculus to graph each function. Follow the steps for graphing a function.
\(f(x) =x^{4}-6x^{2}+10\)
\(f(x) =x^{5}-3x^{3}+4\)
\(f(x)=\dfrac{1}{x-2}\)
\(f(x)=\dfrac{2}{x+2}\)
\(f(x)=\dfrac{2}{x^{2}-4}\)
\(f(x)=\dfrac{1}{x^{2}-1}\)
\(f(x)=\dfrac{2x-1}{x+1}\)
\(f(x)=\dfrac{x-2}{x}\)
\(f(x)=\dfrac{x}{x^{2}+1}\)
\(f(x)=\dfrac{2x}{x^{2}-4}\)
\(f(x)=\dfrac{x^{2}+1}{2x}\)
\(f(x)=\dfrac{x^{2}-1}{2x}\)
\(f(x)=\dfrac{x^{4}+1}{x^{2}}\)
\(f(x)=\dfrac{x^{3}+1}{x+1}\)
\(xy=x^{2}+2\)
\(xy=x^{2}+x-1\)
\(f(x)=\dfrac{x^{2}}{x+3}\)
\(f(x)=\dfrac{3x^{2}-1}{x-1}\)
\(f(x)=1+\dfrac{1}{x}+\dfrac{1}{x^{2}}\)
\(f(x)=\dfrac{2}{x}+\dfrac{1}{x^{2}}\)
\(f(x)=\sqrt{3-x}\)
\(f(x)=x\sqrt{x+2}\)
\(f(x)=x+\sqrt{x}\)
\(f(x)=\sqrt{x}-\sqrt{x+1}\)
\(f(x)=\dfrac{x^{2}}{\sqrt{x+1}}\)
\(f(x)=\dfrac{x}{\sqrt{x^{2}+2}}\)
\(f(x)=\dfrac{1}{({x+1})({x-2})}\)
\(f(x)=\dfrac{1}{({x-1})({x+3})}\)
\(f(x)=x^{2/3}+3x^{1/3}+2\)
\(f(x)=x^{5/3}-5x^{2/3}\)
\(f(x)=\sin x-\cos x\)
\(f(x)=\sin x+\tan x\)
\(f(x)=\sin ^{2}x-\cos x\)
\(f(x)=\cos ^{2}x+\sin x\)
\(y=\ln x-x\)
\(y=x\, \ln x\)
\(f(x)=\ln (4-x^{2})\)
\(y=\ln (x^{2}+2)\)
\(f(x)=3e^{3x}( 5-x)\)
\(f(x)=3e^{-3x}( x-4)\)
\(f(x)=e^{-x^{2}}\)
\(f(x)=e^{1/x}\)
Applications and Extensions
In Problems 43–52, for each function:
\(f(x)=\dfrac{x^{2/3}}{x-1}\)
\(f(x)=\dfrac{5-x}{x^{2}+3x+4}\)
\(f(x)=x+\sin (2x)\)
\(f(x)=x-\cos x\)
\(f(x)=\ln (x\sqrt{x-1})\)
\(f(x)=\ln (\tan ^{2}x)\)
\(f(x)=\sqrt[3]{\sin x}\)
\(f(x)=e^{-x}\cos x\)
\(y^{2}=x^{2}( 6-x)\), \(y\geq 0\)
\(y^{2}=x^{2}(4-x^{2}),\) \(y\geq 0\)
318
In Problems 53–56, graph a function \(f\) that is continuous on the interval \([1,6]\) and satisfies the given conditions.
\( \begin{array}[t]{l} f^\prime (2)\hbox{ does not exist}\\ f^\prime (3)=-1\\ f^{\prime \prime} (3)=0\\ f^\prime (5)=0 \\ f^{\prime \prime} (x)<0,\quad 2<x<3\\ f^{\prime \prime} (x)>0,\quad x>3 \end{array}\)
\( \begin{array}[t]{l} f^\prime (2)=0 \\ f^{\prime \prime} (2)=0 \\ f^\prime (3)\hbox{ does not exist} \\ f^\prime (5)=0 \\ f^{\prime \prime} (x)>0,\quad 2<x<3 \\ f^{\prime \prime} (x)>0,\quad x>3 \end{array}\)
\( \begin{array}[t]{l} f^\prime (2)=0 \\ \lim\limits_{x\rightarrow 3^{-}}\,f^\prime (x)=\infty \\ \lim\limits_{x\rightarrow 3^{+}}\,f^\prime (x)=\infty \\ f^\prime (5)=0 \\ f^{\prime \prime} (x)>0, \quad x<3 \\ f^{\prime \prime} (x)<0, \quad x>3 \end{array}\)
\( \begin{array}[t]{l} f^\prime (2)=0 \\ \lim\limits_{x\rightarrow 3^{-}}\,f^\prime (x)=-\infty \\ \lim\limits_{x\rightarrow 3^{+}}{\,}f^\prime (x)=-\infty \\ f^\prime (5)=0 \\ f^{\prime \prime} (x)<0,\quad x<3 \\ f^{\prime \prime} (x)>0, \quad x>3 \end{array}\)
Sketch the graph of a function \(f\) defined and continuous for \(-1\leq x\leq 2\) that satisfies the following conditions: \[ \begin{array}{@{\hspace*{-1.7pc}}l} f(-1)= 1 \quad f(1) = 2 \quad f(2) = 3 \quad f(0) = 0 \quad f \left( {\dfrac{1}{2}}\right) =3\\[3pt] \quad \lim\limits_{x\rightarrow -1^{+}}f^\prime (x) =-\infty\quad \lim\limits_{x\rightarrow 1^{-}} f^\prime (x) = -1 \quad \lim\limits_{x\rightarrow 1^{+}} f^\prime (x)=\infty\\ {f\hbox{ has a local minimum at }0} \quad {f\hbox{ has a local maximum at }\dfrac{1}{2}} \end{array} \]
Graph of a Function Which of the following is true about the graph of \(y=\ln |x^{2}-1|\) in the interval \((-1,1)\)?
Properties of a Function Suppose \(f(x)=\dfrac{1}{x}+\ln x\) is defined only on the closed interval \(\dfrac{1}{e}\leq x\leq e\).
Probability The function \(f(x)=\dfrac{1}{\sqrt{2\pi }} e^{-x^{2}/2}\), encountered in probability theory, is called the standard normal density function. Determine where this function is increasing and decreasing, find all local maxima and local minima, find all inflection points, and determine the intervals where \(f\) is concave up and concave down. Then graph the function.
In Problems 61–64, graph each function. Use L’Hôpital’s Rule to find any asymptotes.
\(f(x)=\dfrac{\sin (3x)}{x\sqrt{4-x^{2}}}\)
\(f(x)=x^{\sqrt{x}}\)
\(f(x)=~x^{1/x}\)
\(y=\dfrac{1}{x}\tan x\quad -\dfrac{\pi }{2}<x<\dfrac{\pi}{2}\)