Concepts and Vocabulary
True or False Integration by parts is based on the Product Rule for derivatives.
The integration by parts formula states that \(\int\! u\,dv\,{=}\) ______.
Skill Building
In Problems 3–30, use integration by parts to find each integral.
\(\int xe^{2x} dx\)
\(\int xe^{-3x} dx\)
\(\int x\cos x~dx\)
\(\int x\sin (3x)~dx\)
\(\int \sqrt{x}\ln x~dx\)
\(\int x^{-2}\ln x~dx\)
\(\int \cot^{-1}x~dx\)
\(\int \sin^{-1}x~dx\)
\(\int (\ln x)^{2} dx\)
\(\int x(\ln x)^{2} dx\)
\(\int x^{2} \sin x~dx\)
\(\int x^{2}cosx~dx\)
\(\int x\cos^{2}x~dx\)
\(\int x\sin^{2}x~dx\)
\(\int x\sinh x~dx\)
\(\int x\cosh x~dx\)
\(\int \cosh^{-1}x~dx\)
\(\int \sinh^{-1}x~dx\)
\(\int \sin(\ln x)~dx\)
\(\int \cos (\ln x)~dx\)
\(\int (\ln x)^{3} dx\)
\(\int (\ln x)^{4} dx\)
\(\int x^{2}(\ln x)^{2} dx\)
\(\int x^{3}(\ln x)^{2} dx\)
\(\int x^{2}\tan ^{-1}x~dx\)
\(\int x\tan ^{-1}x~dx\)
\(\int 7^{x} x~dx\)
\(\int 2^{-x} x~dx\)
In Problems 31–38, use integration by parts to find each definite integral.
\(\int_{0}^{\pi}e^{x}\cos x~dx\)
\(\int_{0}^{1}x^{2} e^{-x}dx\)
\(\int_{0}^{2}x^{2} e^{-3x} dx\)
\(\int_{0}^{\pi/4}x\tan ^{2}x~dx\)
\(\int_{1}^{9}\ln \sqrt{x} dx\)
\(\int_{\pi/4}^{3\pi/4}x\csc ^{2} x~dx\)
\(\int^{e}_1 (\ln x)^{2} dx\)
\(\int_{0}^{\pi/4}x \sec^{2} x~dx\)
Applications and Extensions
Area Between Two Graphs In Problems 39 and 40, find the area of the region enclosed by the graphs of \(f\) and \(g\).
\(f(x)=3\ln x\) and \(g(x)=x\ln x, x \ge 1\)
\(f(x)=4x\ln x\) and \(g(x)=x^{2}\ln x, x \ge 1\)
Area Under a Graph Find the area under the graph of \(y=e^{x}\sin x\) from \(0\) to \(\pi\).
Volume of a Solid of Revolution Find the volume of the solid of revolution generated by revolving the region bounded by the graph of \(y=\cos x\) and the \(x\)-axis from \(x=0\) to \(x=\dfrac{\pi }{2}\) about the \(y\)-axis. See the figure below.
Volume of a Solid of Revolution Find the volume of the solid of revolution generated by revolving the region bounded by the graph of \(y=\sin x\) and the \(x\)-axis from \(x=0\) to \(x=\dfrac{\pi }{2}\) about the \(y\)-axis.
Volume of a Solid of Revolution Find the volume of the solid of revolution generated by revolving the region bounded by the graph of \(y=x \sqrt{\sin x}\) and the \(x\)-axis from \(x=0\) to \(x=\dfrac{\pi }{2}\) about the \(x\)-axis.
479
Volume of a Solid of Revolution Find the volume of the solid of revolution generated by revolving the region bounded by the graph of \(y=\ln x\) and the \(x\)-axis from \(x=1\) to \(x=e\) about the \(x\)-axis.
Area
Damped Spring The displacement \(x\) of a damped spring at time \(t\), \(0 \le t \le 5\), is given by \(x=x( t)=3e^{-t}\cos (2t) +2e^{-t}\sin (2t)\).
A function \(y=f( x)\) is continuous and differentiable on the interval \(( 2,6)\). If \(\int_{3}^{5}f( x)~dx=18\) and \(f( 3) =8\) and \(f( 5) =11,\) then find \(\int_{3}^{5}x f^{\prime}(x)~dx\).
In Problems 49–54, find each integral by first making a substitution and then integrating by parts.
\(\int \sin\sqrt{x}dx\)
\(\int e^{\sqrt{x}}dx\)
\(\int \cos x \ln(\sin x)~dx\)
\(\int e^{x}\ln (2+e^{x}) dx\)
\(\int e^{4x}\cos e^{2x} dx\)
\(\int \cos x\tan ^{-1} (\sin x)~dx\)
Find \(\int x^{3}e^{x^{2}} dx\). (Hint: Let \(u=x^{2},dv=xe^{x^{2}} dx\).)
Find \(\int x^{n} \ln x~dx\); \(n \neq -1\), \(n\) real.
Find \(\int xe^{x}\cos x~dx\).
Find \(\int xe^{x}\sin x~dx\).
In Problems 59–62, derive each reduction formula where \(n \gt 1\) is an integer.
\(\int x^{n}\sin ^{-1}x\,dx=\dfrac{x^{n+1}}{n+1}\sin^{-1}x-\dfrac{1}{n+1}\int \dfrac{x^{n+1}}{\sqrt{1-x^{2}}}\,dx\)
\(\int \dfrac{dx}{(x^{2}+1)^{n+1}}=\left( 1-\dfrac{1}{2n}\right) \int \dfrac{dx}{(x^{2}+1)^{n}}+\dfrac{x}{2n(x^{2}+1)^{n}}\)
\(\int \sin^{n}x~dx=-\dfrac{\sin ^{n-1}x\cos x}{n}+\dfrac{n-1}{n}\int \sin ^{n-2}x\,dx\)
\(\int \sin^{n}x \cos^{m} x~dx = -\dfrac{\sin^{n-1}x \cos^{m+1}x}{n+m} + \dfrac{n-1}{n+m}\int \sin^{n-2}x \cos^{m} xdx\)
where \(m \neq -n\), \(m \neq -1\)
Derive the formula \[ \int \ln (x+\sqrt{x^{2}+a^{2}})\,dx = x\ln (x+\sqrt{x^{2}+a^{2}}) -\sqrt{x^{2}+a^{2}}+C \]
Derive the formula \[ \int e^{ax}\sin (bx)~dx = \dfrac{e^{ax}[a\sin (bx)-b\cos (bx)]}{a^{2}+b^{2}} +C, a \gt 0, b\gt 0 \]
Suppose \(F(x)=\int_{0}^{x}t\,g^{\prime }(t)\,dt\) for all \(x \ge 0\). Show that \(F(x)=\) \(xg(x)-\int_{0}^{x}g(t)\,dt\).
Use Wallis’ formulas, given below, to find each definite integral.
Challenge Problems
Derive Wallis’ formulas given in Problem 69. (Hint: Use the result of Problem 61.)
480
Show that for any positive integer \(n\), \[ \begin{eqnarray*} \hspace{-20pc}\int_{0}^{1}e^{x^{2}} dx \\ = e\cdot \!\left[ 1-\frac{2}{3}+\frac{4}{15}-\frac{8}{105}+\cdots +\frac{(-1)^{n}2^{n}}{(2n+1)(2n-1)\cdots 3\cdot 1}\right] \\+ (-1)^{n+1} \cdot \frac{2^{n+1}}{(2n+1)(2n-1)\cdots 3\cdot 1} \int_{0}^{1}x^{2n+2}e^{x^{2}}dx \end{eqnarray*} \]
Use integration by parts to show that if \(f\) is a polynomial of degree \(n \ge 1\), then \(\int f( x) e^{x}dx=g( x) e^{x}+C\) for some polynomial \(g( x)\) of degree \(n\).
Start with the identity \(f(b)-f(a)=\int_{a}^{b}f^{\prime}(t)\,dt\) and derive the following generalizations of the Mean Value Theorem for Integrals:
If \(y=f(x)\) has the inverse function given by \(x=f^{-1}(y)\), show that \[ \begin{equation*} \int_{a}^{b}f(x)\,dx+\int_{f(a)}^{f(b)}f^{-1}(y)\,dy=bf(b)-af(a) \end{equation*} \]