Skill Building
In Problems 1–32, find each integral.
\(\int \dfrac{dx}{x^{2}+4x+5}\)
\(\int \dfrac{dx}{x^{2}+2x+5}\)
\(\int \dfrac{dx}{x^{2}+4x+8}\)
\(\int \dfrac{dx}{x^{2}-6x+10}\)
\(\int \dfrac{2\,dx}{3+2x+2x^{2}}\)
\(\int \dfrac{3\,dx}{x^{2}+6x+10}\)
\(\int \dfrac{x\,dx}{2x^{2}+2x+3}\)
\(\int \dfrac{3x\,dx}{x^{2}+6x+10}\)
\(\int \dfrac{dx}{\sqrt{8+2x-x^{2}}}\)
\(\int \dfrac{dx}{\sqrt{5-4x-2x^{2}}}\)
\(\int \dfrac{dx}{\sqrt{4x-x^{2}}}\)
\(\int \dfrac{dx}{\sqrt{x^{2}-6x-10}}\)
\(\int \dfrac{dx}{( x+1) \sqrt{x^{2}+2x+2}}\)
\(\int \dfrac{dx}{( x-4) \sqrt{x^{2}-8x+17}}\)
\(\int \dfrac{dx}{\sqrt{24-2x-x^{2}}}\)
\(\int \dfrac{dx}{\sqrt{9x^{2}+6x+10}}\)
\(\int \dfrac{x-5}{\sqrt{x^{2}-2x+5}}dx\)
\(\int \dfrac{x+1}{x^{2}-4x+3}dx\)
\(\int_{1}^{3}\dfrac{dx}{\sqrt{x^{2}-2x+5}}\)
\(\int_{1/2}^{1}\dfrac{x^{2}\,dx}{\sqrt{2x-x^{2}}}\)
\(\int \dfrac{e^{x}\,dx}{\sqrt{e^{2x}+e^{x}+1}}\)
\(\int \dfrac{\cos x\,dx}{\sqrt{\sin ^{2}x+4\sin x+3}}\)
\(\int \dfrac{2x-3}{\sqrt{4x-x^{2}-3}} dx\)
\(\int \dfrac{x+3}{\sqrt{x^{2}+2x+2}}\,dx\)
\(\int \dfrac{dx}{(x^{2}-2x+10)^{3/2}}\)
\(\int \dfrac{dx}{\sqrt{x^{2}-2x+10}}\)
\(\int \dfrac{dx}{\sqrt{x^{2}+2x-3}}\)
\(\int x\sqrt{x^{2}-4x-1} dx\)
\(\int \dfrac{\sqrt{5+4x-x^{2}}}{x-2}\,dx\)
\(\int \sqrt{5+4x-x^{2}}\,dx\)
\(\int \dfrac{x~dx}{\sqrt{x^{2}+2x-3}}\)
\(\int \dfrac{x~dx}{\sqrt{x^{2}-4x+3}}\)
Applications and Extensions
Show that if \(k\gt0\), then \[ \int \dfrac{dx}{\sqrt{(x+h)^{2}+k} }=\ln \left[ \sqrt{(x+h)^{2}+k}+x+h\right] +C \]
Show that if \(a\gt0\) and \(b^{2}-4ac\gt0\), then \[ \int \dfrac{dx}{\sqrt{ax^{2}+bx+c}}=\dfrac{1}{\sqrt{a}}\ln \left\vert \sqrt{ax^{2}+bx+c}+\sqrt{a}x+\dfrac{b}{2\sqrt{a}}\right\vert +\,C \]
Challenge Problem
Find \(\int \sqrt{\dfrac{a+x}{a-x}}\, dx\), where \(a > 0\).