8.6 Ratio Test; Root Test

591

OBJECTIVES

When you finish this section, you should be able to:

  1. Use the Ratio Test (p. 591)
  2. Use the Root Test (p. 593)

One of the most practical tests for convergence of a series makes use of the ratio of two consecutive terms.

THEOREM Ratio Test

Let \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) be a series of nonzero terms.

  1. Let \(\lim\limits_{n\rightarrow \infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =L,\) a number.
    • If \(\ L<1\), then the series \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) converges absolutely and so \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) is convergent.
    • If \(L=1\), the test fails to indicate whether the series converges or diverges.
    • If \(L>1,\) then the series \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) diverges.
  2. If \(\lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{ a_{n}}\right\vert =\infty \), then the series \(\sum\limits_{k\,=\,1}^{ \infty }a_{k}\) diverges.

A proof of the Ratio Test is given at the end of the section.

1 Use the Ratio Test

Using the Ratio Test

Use the Ratio Test to determine whether each series converges or diverges.

  1. \(\sum\limits_{k\,=\,1}^{\infty }\frac{k}{4^{k}}\)
  2. \(\sum\limits_{k\,=\,1}^{\infty }\frac{2^{k}}{k}\)
  3. \(\sum\limits_{k\,=\,1}^{\infty }\frac{3k+1}{k^{2}}\)
  4. \(\sum\limits_{k\,=\,1}^{\infty }\frac{1}{k!}\)

Solution (a) \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{k}{4^{k}}\) is a series of nonzero terms; \(a_{n+1}=\dfrac{n+1}{4^{n+1}}\) and \(a_{n}= \dfrac{n}{4^{n}}\). The absolute value of their ratio is \[ \left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\dfrac{\dfrac{n+1}{4^{n+1}}}{ \dfrac{n}{4^{n}}}=\dfrac{n+1}{4^{n+1}}\cdot \dfrac{4^{n}}{n}=\frac{n+1}{4n} \]

Then \[ \lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\frac{n+1}{4n}=\frac{1}{4} <1 \]

Since the limit is less than \(1\), the series converges.

(b) \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{2^{k}}{k}\) is a series of nonzero terms; \(a_{n+1}=\dfrac{2^{n+1}}{n+1}\) and \(a_{n}=\dfrac{ 2^{n}}{n}.\) The absolute value of their ratio is \[ \left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\frac{2^{n+1}}{n+1} \cdot \frac{ n}{2^{n}} =\frac{2n}{n+1} \]

Then \[ \lim\limits_{n\,\rightarrow \,\infty }\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\frac{2n}{n+1}=2>1 \]

Since the limit is greater than \(1\), the series diverges.

592

(c) \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{3k+1}{k^{2}}\) is a series of nonzero terms; \(a_{n+1}=\dfrac{3(n+1) +1}{(n+1) ^{2}}=\dfrac{3n+4}{(n+1) ^{2}}\) and \(a_{n}=\dfrac{3n+1 }{n^{2}}\). The absolute value of their ratio is \[ \left\vert \frac{a_{n+1}}{a_{n}}\right\vert {=}\left[ \frac{3n+4}{(n+1)^{2}} \right] \left( \frac{n^{2}}{3n+1}\right) {=}\left( \frac{3n+4}{3n+1}\right) \left( \frac{n^{2}}{n^{2}+2n+1}\right) =\dfrac{3n^{3}+4n^{2}}{3n^{3}+7n^{2}+5n+1} \]

Then \[ \lim\limits_{n\,\rightarrow \,\infty }\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\dfrac{3n^{3}+4n^{2}}{3n^{3}+7n^{2}+5n+1}=1 \]

The Ratio Test gives no information about this series. Another test must be used. \(\bigg({\rm{You}}\, {\rm{can}}\, {\rm{show}}\, {\rm{that}}\, {\rm{the}}\, {\rm{series}}\, {\rm{diverges}}\, {\rm{by}}\, {\rm{comparing}}\, {\rm{it}}\, {\rm{to}}\, {\rm{the}}\, {\rm{harmonic}}\, {\rm{series}}\, \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k}.\bigg)\)

(d) \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!}\) is a series of nonzero terms; \(a_{n+1}=\dfrac{1}{(n+1) !}\) and \(a_{n}=\dfrac{ 1}{n!}\). The absolute value of their ratio is \[ \left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\frac{n!}{(n+1)!} = \frac{1}{n+1} \]

Then \[ \lim_{n\rightarrow \infty }\left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\lim_{n\rightarrow \infty }\frac{1}{n+1}=0 \]

Since the limit is less than \(1,\) the series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!}\) converges.

NOTE

In Section 8.9, we show that \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!}=e\).

NOW WORK

Problem 7.

As Example 1 illustrates, the Ratio Test is useful in determining whether a series containing factorials and/or powers converges or diverges.

Using the Ratio Test

Use the Ratio Test to determine whether the series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{k!}{k^{k}}\) converges or diverges.

Solution \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{k!}{k^{k}}\) is a series of nonzero terms. Since \(a_{n+1}=\dfrac{(n+1)!}{(n+1) ^{n+1}}\) and \(a_{n}=\dfrac{n!}{n^{n}}\), the absolute value of their ratio is \[ \begin{eqnarray*} \begin{array}{@{\hspace*{-0pc}}rcl} \displaystyle\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert &=& \dfrac{\dfrac{(n+1)!}{(n+1) ^{n+1}}}{\dfrac{n!}{n^{n}}}=\dfrac{(n+1)!}{(n+1)^{n+1}}\cdot \dfrac{n^{n}}{n!}=\dfrac{n^{n}}{(n+1)^{n}}\\ &=&\left( \dfrac{n}{n+1}\right)^{n} = \left( \dfrac{1}{1+\dfrac{1}{n}}\right)^{n} = \dfrac{1}{\left( 1+\dfrac{1}{n}\right) ^{n}}\qquad \end{array} \end{eqnarray*} \]

So, \[ \lim\limits_{n\,\rightarrow \,\infty }\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\frac{1}{\left( 1+\dfrac{1 }{n}\right) ^{n}}=\frac{\lim\limits_{n\,\rightarrow \,\infty }1}{ \lim\limits_{n\,\rightarrow \,\infty }\,\left( 1+\dfrac{1}{n}\right) ^{n}}=\frac{1}{e} \]

Since \(\dfrac{1}{e}<1\), the series converges.

NEED TO REVIEW?

The number \(e\) expressed as a limit is discussed in Section 3.3, pp. 227-228.

NOW WORK

Problem 15.

593

We conclude the discussion of the Ratio Test with these observations:

CAUTION

In Example 2, the ratio \(\left\vert \dfrac{a_{n+1}}{a_{n}} \right\vert \) converges to \(\dfrac{1}{e}\). This does not mean that \( \sum\limits_{k\,=\,1}^{\infty }\dfrac{k!}{k^{k}}\) converges to \(\dfrac{1}{e} \). In fact, the sum of the series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{ k!}{k^{k}}\) is not known; all that is known is that the series converges.

The Root Test works well for series of nonzero terms whose \(n\)th term involves an \(n\)th power.

THEOREM Root Test

Let \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) be a series of nonzero terms. Suppose \(\ \lim\limits_{n\rightarrow \infty }\sqrt[{n}]{\,\vert a_{n}\vert }=L\), a number.

  • If \(L<1\), then \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) is absolutely convergent, so the series \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) converges.
  • If \(L>1\), then \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) diverges.
  • If \(L=1\), the test is inconclusive.

The proof of the Root Test is similar to the proof of the Ratio Test. It is left as an exercise (Problem 55).

2 Use the Root Test

Using the Root Test

Use the Root Test to determine whether the series \(\sum\limits_{k\,=\,1}^{ \infty }\dfrac{e^{k}}{k^{k}}\) converges or diverges.

Solution \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{e^{k}}{k^{k}}\) is a series of nonzero terms. The \(n\)th term is \( a_{n}=\) \(\dfrac{e^{n}}{n^{n}}=\left(\dfrac{e}{n}\right)^{n}\). Since \(a_{n}\) involves an \(n\)th power, we use the Root Test. \[ \lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\,\vert a_{n}\vert }=\lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\left( \frac{e}{n}\right) ^{n}}=\lim\limits_{n\,\rightarrow \,\infty }\frac{e}{n}=0<1 \]

The series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{e^{k}}{k^{k}}\) converges.

NOW WORK

Problem 27.

594

Using the Root Test

Use the Root Test to determine whether the series \(\sum\limits_{k\,=\,1}^{ \infty }\left( {\dfrac{8k+3}{5k-2}}\right) ^{\!\!k}\) converges or diverges.

Solution \(\sum\limits_{k\,=\,1}^{\infty }\left( {\dfrac{8k+3}{ 5k-2}}\right) ^{\!\!k}\) is a series of nonzero terms. The \(n\)th term is \(a_{n}=\) \(\left( {\dfrac{8n+3}{5n-2}}\right) ^{\!\!n}\!\). Since \(a_{n}\) involves an \(n\)th power, we use the Root Test. \[ \lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\,\vert a_{n}\vert }=\lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\left( {\dfrac{8n+3}{5n-2}} \right) ^{\!\!n}}=\lim\limits_{n\,\rightarrow \,\infty }\frac{8n+3}{5n-2}=\frac{8}{5}>1 \]

The series diverges.

NOW WORK

Problem 23.

Proof of the Ratio Test

Let \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) be a series of nonzero terms.

Case 1: \(\lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =L,\) a number.

  • \(0\leq L<1\) Let \(r\) be any number for which \( L<r<1\). Since \(\lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{ a_{n+1}}{a_{n}}\right\vert =L\) and \(L<r\), then by the definition of the limit of a sequence, we can find a number \(N\) so that for any number \(n>N\), the ratio \( \left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert \) can be made as close as we please to \(L\) and be less than \(r\). Then \[ \begin{array}{ll@{\qquad}l@{\qquad}l} \left\vert \dfrac{a_{N+1}}{~a_{N}}\right\vert &< r & \hbox{or} & \left\vert a_{N\,+\,1}\right\vert <r\cdot \left\vert a_{N}\right\vert \\[16pt] \left\vert \dfrac{a_{N+2}}{~a_{N+1}}\right\vert &< r & \hbox{or} & \left\vert a_{N\,+\,2}\right\vert <r\cdot \left\vert a_{N\,+\,1}\right\vert <r^{2}\cdot \left\vert a_{N}\right\vert \\[16pt] \left\vert \dfrac{a_{N+3}}{~a_{N+2}}\right\vert &< r~ & \text{ or} & \left\vert a_{N\,+\,3}\right\vert <r\cdot \left\vert a_{N\,+\,2}\right\vert <r^{3}\cdot \left\vert a_{N}\right\vert \end{array} \] Each term of the series \(\vert a_{N\,+\,1}\vert +\vert a_{N\,+\,2} \vert +\cdots \) is less than the corresponding term of the geometric series \(\vert a_{N}\vert \,r+ \vert a_{N} \vert \,r^{2}+\vert a_{N} \vert \,r^{3}+\cdots\). Since \(\vert r\vert <1\), the geometric series converges. By the Comparison Test for Convergence, the series \(\vert a_{N\,+\,1}\vert +\vert a_{N\,+\,2}\vert +\cdots \) also converges. So, the series \(\sum\limits_{k\,=\,1}^{\infty }\vert a_{k}\vert \) converges. By the Absolute Convergence Test, the series \( \sum\limits_{k\,=\,1}^{\infty }a_{k}\) converges.
  • \(L=1\) To show that the test fails for \(L=1\), we exhibit two series, one that diverges and another that converges, to show that no conclusion can be drawn. Consider \(\sum\limits_{k\,=\,1}^{\infty } \dfrac{1}{k}\) and \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k^{2}}\). The first is the harmonic series, which diverges. The second is a \(p\)-series with \(p>1,\) which converges. It is left to you to show that \( \lim\limits_{n\rightarrow \infty }\left\vert \dfrac{a_{n+1}}{a_{n}} \right\vert =1\) in each case. (See Problems 45 and 46.)
  • \(L>1\) Let \(r\) be any number for which \(1<r<L\). Since \( \lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}} \right\vert =L,\) there is a number \(N\) so that for any number \(n>N\), the ratio \(\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert \) can be made as close as we please to \(L\) and will be greater than \(r\). That is, for all numbers \( n>N\), the ratio \(\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert >r>1\) so that \(\left\vert a_{n+1}\right\vert >\vert a_{n}\vert \). After the \(N\)th term, the absolute value of the terms are positive and increasing. So, \(\lim\limits_{n\,\rightarrow \,\infty }\,\vert a_{n}\vert \neq 0\) and, therefore, \(\lim\limits_{n\rightarrow \infty }a_{n}\neq 0.\) By the Test for Divergence, the series diverges.

595

Case 2: \(\lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =\infty \) The proof that this series diverges is left as an exercise (Problem 54).