Concepts and Vocabulary
True or False Every power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}(x-c) ^{k}\) converges for at least one number.
True or False Let \(b_{n}\) denote the \(n\)th term of the power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\). If \( \lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{b_{n+1}}{b_{n}} \right\vert \lt 1\) for every number \(x\), then \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) is absolutely convergent on the interval \(( -\infty ,\,\infty ) \).
True or False If the radius of convergence of a power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) is \(0\), then the power series converges only for \(x=0\).
True or False If a power series converges at one endpoint of its interval of convergence, then it must converge at its other endpoint.
True or False The power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) and \(\sum\limits_{k\,=\,0}^{\infty }a_{k}(x-3)^{k}\) have the same radius of convergence.
True or False The power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) and \(\sum\limits_{k\,=\,0}^{\infty }a_{k}(x-3)^{k}\) have the same interval of convergence.
True or False If the power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) converges for \(x=8\), then it converges for \(x=-8\).
True or False If the power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) converges for \(x=3\), then it converges for \(x=1\).
True or False If the power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) converges for \(x=-4\), then it converges for \(x=3\).
True or False If the power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) converges for \(x=3\), then it diverges for \(x=5\).
True or False A possible interval of convergence for the power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) is \([-2,4]\).
True or False If the power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) diverges for a number \(x_{1}\), then it converges for all numbers \(x\) for which \(\vert x\vert <\vert x_{1}\vert \).
Skill Building
In Problems 13–16, find all numbers \(x\) for which each power series converges.
\(\sum\limits_{k\,=\,0}^{\infty} kx^{k}\)
\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{kx^{k}}{3^{k}}\)
\(\sum\limits_{k\,=\,0}^{\infty }\dfrac{(x+1)^{k}}{3^{k}}\)
\(\sum\limits_{k=1}^{\infty}\dfrac{(x-2) ^{k}}{k^{2}}\)
In Problems 17–26:
\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{2^{k}(k+1) }\)
\(\sum\limits_{k\,=\,0}^{\infty}(-1) ^{k}\dfrac{x^{k}}{2^{k}(k+1) }\)
\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{k+5}\)
\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{1+k^{2}}\)
\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{k^{2}x^{k}}{3^{k}}\)
\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{2^{k}x^{k}}{3^{k}}\)
\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{kx^{k}}{2k+1}\)
\(\sum\limits_{k\,=\,0}^{\infty}(6x)^{k}\)
\(\sum\limits_{k\,=\,0}^{\infty}(x-3)^{k}\)
\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{k(2x)^{k}}{3^{k}}\)
In Problems 27–44, find the radius of convergence and the interval of convergence of each power series.
\(\sum\limits_{k=1}^{\infty}\dfrac{x^{k}}{k^{3}}\)
\(\sum\limits_{k=2}^{\infty}\dfrac{x^{k}}{\ln k}\)
\(\sum\limits_{k=1}^{\infty}\dfrac{(x-2)^{k}}{k^{3}}\)
\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{k(x-2) ^{k}}{3^{k}}\)
\(\!\sum\limits_{k\,=\,0}^{\infty}\dfrac{(-1)^{k}}{(2k+1)!}x^{2k+1}\)
\(\sum\limits_{k=1}^{\infty}(kx)^{k}\)
\(\sum\limits_{k=1}^{\infty}\dfrac{kx^{k}}{\ln (k+1)}\)
\(\sum\limits_{k=1}^{\infty}\dfrac{x^{k}}{\ln (k+1)}\)
\(\sum\limits_{k=0}^{\infty}\dfrac{k(k+1)x^{k}}{4^{k}}\)
610
\(\sum\limits_{k=1}^{\infty}\dfrac{(-1)^{k}(x-5)^{k}}{k(k+1)}\)
\(\sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{(x-3)^{2k}}{9^{k}}\)
\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{e^{k}}\)
\(\sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{(2x)^{k}}{k!}\)
\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{(x+1)^{k}}{k!}\)
\(\sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{(x-1)^{4k}}{k!}\)
\(\sum\limits_{k=1}^{\infty}\dfrac{(x+1)^{k}}{k(k+1)(k+2)}\)
\(\sum\limits_{k=1}^{\infty}\dfrac{k^{k}x^{k}}{k!}\)
\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{3^{k}(x-2)^{k}}{k!}\)
A function \(f\) is defined by the power series \(f(x) =\sum\limits_{k\,=\,0}^{\infty }\dfrac{x^{k}}{3^{k}}\).
A function \(f\) is defined by the power series \(f(x)=\sum\limits_{k\,=\,0}^{\infty }(-1) ^{k}\left(\dfrac{x}{2}\right)^{k}\).
A function \(f\) is defined by the power series \(f(x)=\sum\limits_{k\,=\,0}^{\infty }\dfrac{(x-2) ^{k}}{2^{k}}\).
A function \(f\) is defined by the power series \(f(x) =\sum\limits_{k\,=\,0}^{\infty }(-1) ^{k}(x+3)^{k}\).
If \(\sum\limits_{k=0}^{\infty }a_{k\,}x^{k}\) converges for \(x=3\), what, if anything, can be said about the convergence at \(x=2\)? Can anything be said about the convergence at \(x=5\)?
If \(\sum\limits_{k=0}^{\infty }a_{k}(x-2)^{k}\) converges for \(x=6\), at what other numbers \(x\) must the series necessarily converge?
If the series \(\sum\limits_{k=0}^{\infty }\,a_{k}x^{k}\) converges for \(x=6\) and diverges for \(x=-8\), what, if anything, can be said about the truth of the following statements?
If the radius of convergence of the power series \(\sum\limits_{k=0}^{\infty }\,a_{k}(x-3) ^{k}\) is \(R=5\), what, if anything, can be said about the truth of the following statements?
In Problems 53–58:
\(f(x) =\dfrac{1}{1+x^{3}}\)
\(f(x) =\dfrac{1}{1-x^{2}}\)
\(f(x) =\dfrac{1}{6-2x}\)
\(f(x) =\dfrac{4}{x+2}\)
\(f(x) =\dfrac{x}{1+x^{3}}\)
\(f(x) =\dfrac{4x^{2}}{x+2}\)
In Problems 59–62:
\(f(x) =\sum\limits_{k\,=\,0}^{\infty}\dfrac{(-1) ^{k}x^{2k+1}}{(2k+1) !}\)
\(f(x)=\sum\limits_{k\,=\,0}^{\infty}\dfrac{(-1)^{k}x^{2k}}{(2k) !}\)
\(f(x)=\sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{k!}\)
\(f(x)=\sum\limits_{k\,=\,0}^{\infty}\dfrac{(-1)^{k}x^{k}}{k!}\)
In Problems 63–70, find a power series representation of \(f\). Use a geometric series and properties of a power series.
\(f(x) =\dfrac{1}{(1+x)^{2}}\)
\(f(x) =\dfrac{1}{(1-x)^{3}}\)
\(f(x)=\dfrac{2}{3 (1-x) ^{2}} \)
\(f(x) =\dfrac{1}{(1-x) ^{4}}\)
\(f(x) =\ln \left( \dfrac{1}{1+x}\right)\)
\(f(x) =\ln (1-2x) \)
\(f(x) =\ln (1-x^{2})\)
\(f(x) =\ln (1+x^{2})\)
611
Applications and Extensions
In Problems 71–78, find all \(x\) for which each power series converges.
\(\sum\limits_{k=1}^{\infty}\dfrac{x^k}{k}\)
\(\sum\limits_{k=1}^{\infty}\dfrac{(x-4)^{k}}{k}\)
\(\sum\limits_{k=1}^{\infty}\dfrac{x^{k}}{2k+1}\)
\(\sum\limits_{k=1}^{\infty}\dfrac{x^{k}}{k^{2}}\)
\(\sum\limits_{k\,=\,0}^{\infty}x^{k^{2}}\)
\(\sum\limits_{k=1}^{\infty}\dfrac{k^{a}}{a^{k}}(x-a)^{k}, \quad a\neq 0\)
\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{(k!)^{2}}{(2k)!}(x-1)^{k}\)
\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{\sqrt{k!}}{(2k)!}x^{k}\)
Use the power series found in Problem 80 to get an approximation for \(\ln 2\) correct to three decimal places.
Use the first 1000 terms of Gregory’s series to approximate \(\dfrac{\pi }{4}\). What is the approximation for \(\pi ?\)
If \(R>0\) is the radius of convergence of \(\sum\limits_{k=1}^{\infty }a_{k}x^{k}\), show that \(\lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =\dfrac{1}{R}\), provided this limit exists.
If \(R\) is the radius of convergence of \(\sum\limits_{k=1}^{\infty }a_{k}x^{k}\), show that the radius of convergence of \(\sum\limits_{k=1}^{\infty }a_{k}x^{2k}\) is \(\sqrt{R}\).
Prove that if a power series is absolutely convergent at one endpoint of its interval of convergence, then the power series is absolutely convergent at the other endpoint.
Suppose \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) converges for \(\vert x\vert <R\) and that \(\lim\limits_{n\rightarrow \infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert\) exists. Show that \(\sum\limits_{k=1}^{\infty }ka_{k}x^{k-1}\) and \(\sum\limits_{k\,=\,0}^{\infty } \dfrac{a_{k}}{k+1}x^{k+1}\) also converge for \(\vert x\vert <R\).
Challenge Problems
Consider the differential equation \[ (1+x^{2})\,y^{\prime \prime} -4xy^\prime +6y=0 \]
Assuming there is a solution \(y(x)=\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) , substitute and obtain a formula for \(a_{k}\). Your answer should have the form \[ y(x)=a_{0}(1-3x^{2}) +a_{1}\!\left( x-\dfrac{1}{3}x^{3}\right)\qquad a_{0},~a_{1} \hbox{ real numbers} \]
If the series \(\sum\limits_{k=0}^{\infty }a_{k}3^{k}\) converges, show that the series \(\sum\limits_{k=1}^{\infty }ka_{k}2^{k}\) also converges.
Find the interval of convergence of the series \(\sum\limits_{k=1}^{\infty }\dfrac{(x-2)^{k}}{k(3^{k})}\).
Let a power series \(S(x)\) be convergent for \(\vert x\vert <R\). Assume that \(S(x)=\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) with partial sums \(S_{n}(x)=\sum\limits_{k\,=\,0}^{n}a_{k}x^{k}\). Suppose for any number \(\varepsilon >0\), there is a number \(N\) so that when \(n>N\), \(\vert S(x)-S_{n}(x) \vert <\dfrac{\varepsilon }{3}\) for all \(\vert x\vert <R\). Show that \(S(x) \) is continuous for all \(\vert x\vert <R\).
Find the power series in \(x\), denoted by \(f(x)\), for which \(f^{\prime \prime} (x) + f(x) =0\) and \(f(0) =0\), \(f^\prime (0) =1\). What is the radius of convergence of the series?
The Bessel function of order \(m\) of the first kind, where \(m\) is a nonnegative integer, is defined as \[ J_{m}(x) =\sum\limits_{k\,=\,0}^{\infty }(-1) ^{k} \dfrac{1}{(k+m) !\, k!}\left( \dfrac{x}{2}\right) ^{2k+m} \]
Show that: