8.8 Assess Your Understanding

Concepts and Vocabulary

Question

True or False Every power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}(x-c) ^{k}\) converges for at least one number.

Question

True or False Let \(b_{n}\) denote the \(n\)th term of the power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\). If \( \lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{b_{n+1}}{b_{n}} \right\vert \lt 1\) for every number \(x\), then \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) is absolutely convergent on the interval \(( -\infty ,\,\infty ) \).

Question

True or False If the radius of convergence of a power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) is \(0\), then the power series converges only for \(x=0\).

Question

True or False If a power series converges at one endpoint of its interval of convergence, then it must converge at its other endpoint.

Question

True or False The power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) and \(\sum\limits_{k\,=\,0}^{\infty }a_{k}(x-3)^{k}\) have the same radius of convergence.

Question

True or False The power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) and \(\sum\limits_{k\,=\,0}^{\infty }a_{k}(x-3)^{k}\) have the same interval of convergence.

Question

True or False If the power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) converges for \(x=8\), then it converges for \(x=-8\).

Question

True or False If the power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) converges for \(x=3\), then it converges for \(x=1\).

Question

True or False If the power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) converges for \(x=-4\), then it converges for \(x=3\).

Question

True or False If the power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) converges for \(x=3\), then it diverges for \(x=5\).

Question

True or False A possible interval of convergence for the power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) is \([-2,4]\).

Question

True or False If the power series \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) diverges for a number \(x_{1}\), then it converges for all numbers \(x\) for which \(\vert x\vert <\vert x_{1}\vert \).

Skill Building

In Problems 13–16, find all numbers \(x\) for which each power series converges.

Question

\(\sum\limits_{k\,=\,0}^{\infty} kx^{k}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{kx^{k}}{3^{k}}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty }\dfrac{(x+1)^{k}}{3^{k}}\)

Question

\(\sum\limits_{k=1}^{\infty}\dfrac{(x-2) ^{k}}{k^{2}}\)

In Problems 17–26:

  1. Use the Ratio Test to find the radius of convergence and the interval of convergence of each power series.
  2. Use the Root Test to find the radius of convergence and the interval of convergence of each power series.
  3. Which test, the Ratio Test or the Root Test, did you find easier to use? Give the reasons why.

Question

\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{2^{k}(k+1) }\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}(-1) ^{k}\dfrac{x^{k}}{2^{k}(k+1) }\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{k+5}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{1+k^{2}}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{k^{2}x^{k}}{3^{k}}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{2^{k}x^{k}}{3^{k}}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{kx^{k}}{2k+1}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}(6x)^{k}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}(x-3)^{k}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{k(2x)^{k}}{3^{k}}\)

In Problems 27–44, find the radius of convergence and the interval of convergence of each power series.

Question

\(\sum\limits_{k=1}^{\infty}\dfrac{x^{k}}{k^{3}}\)

Question

\(\sum\limits_{k=2}^{\infty}\dfrac{x^{k}}{\ln k}\)

Question

\(\sum\limits_{k=1}^{\infty}\dfrac{(x-2)^{k}}{k^{3}}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{k(x-2) ^{k}}{3^{k}}\)

Question

\(\!\sum\limits_{k\,=\,0}^{\infty}\dfrac{(-1)^{k}}{(2k+1)!}x^{2k+1}\)

Question

\(\sum\limits_{k=1}^{\infty}(kx)^{k}\)

Question

\(\sum\limits_{k=1}^{\infty}\dfrac{kx^{k}}{\ln (k+1)}\)

Question

\(\sum\limits_{k=1}^{\infty}\dfrac{x^{k}}{\ln (k+1)}\)

Question

\(\sum\limits_{k=0}^{\infty}\dfrac{k(k+1)x^{k}}{4^{k}}\)

610

Question

\(\sum\limits_{k=1}^{\infty}\dfrac{(-1)^{k}(x-5)^{k}}{k(k+1)}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{(x-3)^{2k}}{9^{k}}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{e^{k}}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{(2x)^{k}}{k!}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{(x+1)^{k}}{k!}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{(x-1)^{4k}}{k!}\)

Question

\(\sum\limits_{k=1}^{\infty}\dfrac{(x+1)^{k}}{k(k+1)(k+2)}\)

Question

\(\sum\limits_{k=1}^{\infty}\dfrac{k^{k}x^{k}}{k!}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{3^{k}(x-2)^{k}}{k!}\)

Question

A function \(f\) is defined by the power series \(f(x) =\sum\limits_{k\,=\,0}^{\infty }\dfrac{x^{k}}{3^{k}}\).

  1. Find the domain of \(f\).
  2. Evaluate \(f(2)\) and \(f(-1)\).
  3. Find \(f\).

Question

A function \(f\) is defined by the power series \(f(x)=\sum\limits_{k\,=\,0}^{\infty }(-1) ^{k}\left(\dfrac{x}{2}\right)^{k}\).

  1. Find the domain of \(f\).
  2. Evaluate \(f(0)\) and \(f(1)\).
  3. Find \(f\).

Question

A function \(f\) is defined by the power series \(f(x)=\sum\limits_{k\,=\,0}^{\infty }\dfrac{(x-2) ^{k}}{2^{k}}\).

  1. Find the domain of \(f\).
  2. Evaluate \(f(1)\) and \(f(2)\).
  3. Find \(f\).

Question

A function \(f\) is defined by the power series \(f(x) =\sum\limits_{k\,=\,0}^{\infty }(-1) ^{k}(x+3)^{k}\).

  1. Find the domain of \(f\).
  2. Evaluate \(f(-3)\) and \(f(-2.5)\).
  3. Find \(f\).

Question

If \(\sum\limits_{k=0}^{\infty }a_{k\,}x^{k}\) converges for \(x=3\), what, if anything, can be said about the convergence at \(x=2\)? Can anything be said about the convergence at \(x=5\)?

Question

If \(\sum\limits_{k=0}^{\infty }a_{k}(x-2)^{k}\) converges for \(x=6\), at what other numbers \(x\) must the series necessarily converge?

Question

If the series \(\sum\limits_{k=0}^{\infty }\,a_{k}x^{k}\) converges for \(x=6\) and diverges for \(x=-8\), what, if anything, can be said about the truth of the following statements?

  1. The series converges for \(x=2\).
  2. The series diverges for \(x=7\).
  3. The series is absolutely convergent for \(x=6\).
  4. The series converges for \(x=-6\).
  5. The series diverges for \(x=10\).
  6. The series is absolutely convergent for \(x=4\).

Question

If the radius of convergence of the power series \(\sum\limits_{k=0}^{\infty }\,a_{k}(x-3) ^{k}\) is \(R=5\), what, if anything, can be said about the truth of the following statements?

  1. The series converges for \(x=2\).
  2. The series diverges for \(x=7\).
  3. The series diverges for \(x=8\).
  4. The series converges for \(x=-6\).
  5. The series converges for \(x=-2\).

In Problems 53–58:

  1. Use a geometric series to represent each function as a power series centered at \(0\).
  2. Determine the radius of convergence and the interval of convergence of each series.

Question

\(f(x) =\dfrac{1}{1+x^{3}}\)

Question

\(f(x) =\dfrac{1}{1-x^{2}}\)

Question

\(f(x) =\dfrac{1}{6-2x}\)

Question

\(f(x) =\dfrac{4}{x+2}\)

Question

\(f(x) =\dfrac{x}{1+x^{3}}\)

Question

\(f(x) =\dfrac{4x^{2}}{x+2}\)

In Problems 59–62:

  1. Use the differentiation property of power series to find }\(f^\prime(x)\) for each series.
  2. Use the integration property of power series to find the indefinite integral of each series.

Question

\(f(x) =\sum\limits_{k\,=\,0}^{\infty}\dfrac{(-1) ^{k}x^{2k+1}}{(2k+1) !}\)

Question

\(f(x)=\sum\limits_{k\,=\,0}^{\infty}\dfrac{(-1)^{k}x^{2k}}{(2k) !}\)

Question

\(f(x)=\sum\limits_{k\,=\,0}^{\infty}\dfrac{x^{k}}{k!}\)

Question

\(f(x)=\sum\limits_{k\,=\,0}^{\infty}\dfrac{(-1)^{k}x^{k}}{k!}\)

In Problems 63–70, find a power series representation of \(f\). Use a geometric series and properties of a power series.

Question

\(f(x) =\dfrac{1}{(1+x)^{2}}\)

Question

\(f(x) =\dfrac{1}{(1-x)^{3}}\)

Question

\(f(x)=\dfrac{2}{3 (1-x) ^{2}} \)

Question

\(f(x) =\dfrac{1}{(1-x) ^{4}}\)

Question

\(f(x) =\ln \left( \dfrac{1}{1+x}\right)\)

Question

\(f(x) =\ln (1-2x) \)

Question

\(f(x) =\ln (1-x^{2})\)

Question

\(f(x) =\ln (1+x^{2})\)

611

Applications and Extensions

In Problems 71–78, find all \(x\) for which each power series converges.

Question

\(\sum\limits_{k=1}^{\infty}\dfrac{x^k}{k}\)

Question

\(\sum\limits_{k=1}^{\infty}\dfrac{(x-4)^{k}}{k}\)

Question

\(\sum\limits_{k=1}^{\infty}\dfrac{x^{k}}{2k+1}\)

Question

\(\sum\limits_{k=1}^{\infty}\dfrac{x^{k}}{k^{2}}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}x^{k^{2}}\)

Question

\(\sum\limits_{k=1}^{\infty}\dfrac{k^{a}}{a^{k}}(x-a)^{k}, \quad a\neq 0\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{(k!)^{2}}{(2k)!}(x-1)^{k}\)

Question

\(\sum\limits_{k\,=\,0}^{\infty}\dfrac{\sqrt{k!}}{(2k)!}x^{k}\)

Question

  1. In the geometric series \(\dfrac{1}{1-x}=\sum \limits_{k\,=\,0}^{\infty }x^{k}\), \(-1\lt x \lt 1\), replace \(x\) by \(x^{2}\) to obtain the power series representation for \(\dfrac{1}{1-x^{2}}\).
  2. What is its interval of convergence?

Question

  1. Integrate the power series found in Problem 79 for \(\dfrac{1}{1-x^{2}}\) to obtain the power series \(\dfrac{1}{2}\ln \dfrac{1+x}{1-x}\).
  2. What is its interval of convergence?

Question

Use the power series found in Problem 80 to get an approximation for \(\ln 2\) correct to three decimal places.

Question

Use the first 1000 terms of Gregory’s series to approximate \(\dfrac{\pi }{4}\). What is the approximation for \(\pi ?\)

Question

If \(R>0\) is the radius of convergence of \(\sum\limits_{k=1}^{\infty }a_{k}x^{k}\), show that \(\lim\limits_{n\,\rightarrow \,\infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =\dfrac{1}{R}\), provided this limit exists.

Question

If \(R\) is the radius of convergence of \(\sum\limits_{k=1}^{\infty }a_{k}x^{k}\), show that the radius of convergence of \(\sum\limits_{k=1}^{\infty }a_{k}x^{2k}\) is \(\sqrt{R}\).

Question

Prove that if a power series is absolutely convergent at one endpoint of its interval of convergence, then the power series is absolutely convergent at the other endpoint.

Question

Suppose \(\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) converges for \(\vert x\vert <R\) and that \(\lim\limits_{n\rightarrow \infty }\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert\) exists. Show that \(\sum\limits_{k=1}^{\infty }ka_{k}x^{k-1}\) and \(\sum\limits_{k\,=\,0}^{\infty } \dfrac{a_{k}}{k+1}x^{k+1}\) also converge for \(\vert x\vert <R\).

Challenge Problems

Question

Consider the differential equation \[ (1+x^{2})\,y^{\prime \prime} -4xy^\prime +6y=0 \]

Assuming there is a solution \(y(x)=\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) , substitute and obtain a formula for \(a_{k}\). Your answer should have the form \[ y(x)=a_{0}(1-3x^{2}) +a_{1}\!\left( x-\dfrac{1}{3}x^{3}\right)\qquad a_{0},~a_{1} \hbox{ real numbers} \]

Question

If the series \(\sum\limits_{k=0}^{\infty }a_{k}3^{k}\) converges, show that the series \(\sum\limits_{k=1}^{\infty }ka_{k}2^{k}\) also converges.

Question

Find the interval of convergence of the series \(\sum\limits_{k=1}^{\infty }\dfrac{(x-2)^{k}}{k(3^{k})}\).

Question

Let a power series \(S(x)\) be convergent for \(\vert x\vert <R\). Assume that \(S(x)=\sum\limits_{k\,=\,0}^{\infty }a_{k}x^{k}\) with partial sums \(S_{n}(x)=\sum\limits_{k\,=\,0}^{n}a_{k}x^{k}\). Suppose for any number \(\varepsilon >0\), there is a number \(N\) so that when \(n>N\), \(\vert S(x)-S_{n}(x) \vert <\dfrac{\varepsilon }{3}\) for all \(\vert x\vert <R\). Show that \(S(x) \) is continuous for all \(\vert x\vert <R\).

Question

Find the power series in \(x\), denoted by \(f(x)\), for which \(f^{\prime \prime} (x) + f(x) =0\) and \(f(0) =0\), \(f^\prime (0) =1\). What is the radius of convergence of the series?

Question

The Bessel function of order \(m\) of the first kind, where \(m\) is a nonnegative integer, is defined as \[ J_{m}(x) =\sum\limits_{k\,=\,0}^{\infty }(-1) ^{k} \dfrac{1}{(k+m) !\, k!}\left( \dfrac{x}{2}\right) ^{2k+m} \]

Show that:

  1. \(J_{0}(x) =x^{-1}\dfrac{d}{dx}(xJ_{1}(x) )\)
  2. \(J_{1}(x) =x^{-2}\dfrac{d}{dx}(x^{2}J_{2}(x) )\)