Chapter Review
Definitions:
- A sequence is a function whose domain is the set of positive integers and whose range is a subset of real numbers. (p. 538)
- \(n\)th term of a sequence (p. 538)
- Limit of a sequence (p. 541)
- Convergence; divergence of a sequence (p. 541)
- Related function of a sequence (p. 543)
- Divergence of a sequence to infinity (p. 545)
- Bounded sequence (p. 546)
- Monotonic sequence (p. 548)
Properties of a Convergent Sequence: (p. 542)
If \(\{ s_{n}\}\) and \(\{ t_{n}\}\) are convergent sequences and if \(c\) is a number, then
- Constant multiple property: \(\lim\limits_{n\,\rightarrow \,\infty }\left( cs_{n}\right) =c\lim\limits_{n\,\rightarrow \,\infty }s_{n}\)
- Sum and difference properties: \(\lim\limits_{n\,\rightarrow \,\infty }\left( s_{n}\pm t_{n}\right) =\lim\limits_{n\,\rightarrow \,\infty }s_{n} \) \(\pm \lim\limits_{~n\,\rightarrow \,\infty }t_{n}\)
- Product property: \(\lim\limits_{~n\,\rightarrow \,\infty }\left( s_{n}\cdot t_{n}\right) =\left( \lim\limits_{n\,\rightarrow \,\infty }s_{n}\right) \left( \lim\limits_{n\,\rightarrow \,\infty }t_{n}\right) \)
- Quotient property: \(\lim\limits_{~n\,\rightarrow \,\infty }\dfrac{ s_{n}}{t_{n}}=\dfrac{\lim\limits_{n\,\rightarrow \,\infty }s_{n}}{ \lim\limits_{n\,\rightarrow \,\infty }t_{n}}\) provided \( \lim\limits_{n\,\rightarrow \,\infty }t_{n}\neq 0\)
- Power property: \(\lim\limits_{n\rightarrow \infty }s_{n}^{p}=\left[ \lim\limits_{n\rightarrow \infty }s_{n}\right] ^{p}\) where \(p\geq 2\) is an integer
- Root property: \(\lim\limits_{n\rightarrow \infty }\sqrt[p]{s_{n}}=\sqrt [p]{\lim\limits_{n\rightarrow \infty }s_{n}}\), where \(p\geq 2\) and \( s_{n}\geq 0\) if \(p\) is even
Theorems:
- Let \(\{ s_{n}\} \) be a sequence of real numbers. If \(\lim\limits_{n\rightarrow \infty }s_{n}=L\) and if \(f\) is a function that is continuous at \(L\) and is defined for all numbers \(s_{n},\) then \(\lim\limits_{n\rightarrow \infty }f\!\!\left( s_{n}\right) =f(L) .\) (p. 543)
- The Squeeze Theorem for sequences (p. 545)
- A convergent sequence is bounded (p. 547)
- If a sequence is not bounded from above or if it is not bounded from below, then it diverges. (p. 549)
- An increasing (or nondecreasing) sequence \(\{ s_{n}\} \) that is bounded from above converges. (p. 549)
- A decreasing (or nonincreasing) sequence \(\{ s_{n}\} \) that is bounded from below converges. (p. 549)
- Let \(\{ s_{n}\} \) be a sequence and let \(f\) be a related function of \(\{ s_{n}\} \). Suppose \(L\) is a real number.
If \(\lim\limits_{x\,\rightarrow \,\infty }~f(x)=L\), then \(\lim\limits_{n\,\rightarrow \,\infty }s_{n}\) \(=L\). (p. 544)
- The sequence \(\{ r^{n}\} \), where \(r\) is a real number,
- converges to \(0,\) for \(-1<r<1\).
- converges to \(1,\) for \(r=1\).
- diverges for all other numbers (p. 546).
Procedure: Ways to show a sequence is monotonic (p. 548)
Summary: How to determine if a sequence converges (p. 550)
- If \(a_{1}\), \(a_{2}\), \(\ldots ,\) \(a_{n},\) \(\ldots \) is an infinite collection of numbers, the expression \(\sum\limits_{k\,=\,1}^{\infty}a_{k}=a_{1}+a_{2}+\cdots +a_{n}+\cdots \) is called an infinite series or, simply, a series. (p. 554)
- \(n\)th term or general term of a series (p. 554)
- Partial sum \(S_{n}=\sum\limits_{k\,=\,1}^{n}a_{k},\) where \(S_{n}\) is the sum of the first \(n\) terms of the series \(\sum\limits_{k\,=\,1}^{\infty}a_{k}\) (p. 554)
- Convergence, divergence of a series (p. 555)
- Geometric series \(\sum\limits_{k\,=\,1}^{\infty }ar^{k-1}=a+ar+ar^{2}+\cdots, a\neq 0\) (p. 557)
\(\sum\limits_{k\,=\,1}^{\infty }ar^{k-1}\) converges if \(\vert r\vert <1\), and its sum is \(\dfrac{a}{1-r}\) \(\sum\limits_{k\,=\,1}^{\infty }ar^{k-1}\) diverges if \(\vert r\vert \geq 1\). (p. 558)
- Harmonic series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k}=1+\dfrac{ 1}{2}+\dfrac{1}{3}+\cdots \) (p. 561)
The harmonic series diverges. (p. 561)
Summary: Series and convergence of series (p. 561)
8.3 Properties of Series; the Integral Test
- If the series \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) converges, then \(\lim\limits_{n\,\rightarrow \,\infty }a_{n}=0\). (p. 566)
- The Test for Divergence: The infinite series \(\sum\limits_{k\,=\,1}^{ \infty }a_{k}\) diverges if \(\lim\limits_{n\,\rightarrow \,\infty}\,a_{n}\neq 0.\) (p. 566)
- If two infinite series are identical after a certain term, then either both series converge or both series diverge. If both series converge, they do not necessarily have the same sum. (p. 567)
- The General Convergence Test (p. 569)
- The Integral Test (p. 569)
- A \(p\)-series \(\sum\limits_{k=1}^{ \infty }\dfrac{1}{k^{p}} =1+\dfrac{1}{2^{p}} + \dfrac{1}{3^{p}}+\cdots +\dfrac{1 }{n^{p}}+\cdots ,\) where \(p\) is a positive real number. (p. 570) The \(p\) -series \( \sum\limits_{k=1}^{\infty }\dfrac{1}{k^{p}}\) converges if \(p>1\) and diverges if \(0<p\leq 1\). (p. 571)
- Bounds on the sum of a \(p\)-series: If \(p>1\), then \(\dfrac{1}{p-1} <\sum\limits_{k\,=\,1}^{\infty }\) \(\dfrac{1}{k^{p}}<1+\dfrac{1}{p-1}\). (p. 572)
Properties of Convergent Series: If \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) and \(\sum\limits_{k\,=\,1}^{\infty }b_{k}\) are two convergent series and if \(c\neq 0\) is a number, then
- Sum and difference properties: \[ \sum\limits_{k\,=\,1}^{\infty }(a_{k}\pm b_{k})=\sum\limits_{k\,=\,1}^{\infty }a_{k}\pm \sum\limits_{k\,=\,1}^{\infty }b_{k} (p. 568) \]
-
Constant multiple property: \[ \sum\limits_{k\,=\,1}^{\infty}(ca_{k})=c\sum\limits_{k\,=\,1}^{\infty }a_{k} (p. 568) \]
- If \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) diverges, then \(\sum\limits_{k\,=\,1}^{\infty}(ca_{k})\) also diverges. (p. 568)
Theorems:
- Comparison Test for Convergence: If \(0<a_{k}\leq b_{k}\), for all \(k,\) and \(\sum\limits_{k=1}^{\infty }b_{k}\) converges, then \(\sum\limits_{k=1}^{\infty}a_{k}\) converges. (p. 576)
- Comparison Test for Divergence: If \(0<c_{k}\leq a_{k}\), for all \(k,\) and \(\sum\limits_{k=1}^{\infty }c_{k}\) diverges, then \(\sum\limits_{k=1}^{ \infty }a_{k}\) diverges. (p. 576)
- Limit Comparison Test: Suppose \(\sum\limits_{k=1}^{\infty }\,a_{k}\) and \(\sum\limits_{k=1}^{\infty }\,b_{k}\) are both series of positive terms. If \(\lim\limits_{n\,\rightarrow \,\infty }\,\dfrac{a_{n}}{b_{n}}=L\), \(0<L<\infty ,\) then both series converge or both diverge. (p. 577)
Summary: Table 3: Series often used for comparisons (p. 579)
8.5 Alternating Series; Absolute Convergence
Definitions:
- Alternating series (p. 582)
- A series \(\sum\limits_{k=1}^{\infty }a_{k}\) is absolutely convergent if the series \(\sum\limits_{k\,=\,1}^{\infty }\vert a_{k}\vert \) is convergent. (p. 585)
- A series that is convergent without being absolutely convergent is conditionally convergent. (p. 587)
Theorems:
- Alternating Series Test: (p. 582)
- Error estimate (p. 584)
- Absolute Convergence Test: If a series \(\sum\limits_{k=1}^{\infty }a_{k}\) is absolutely convergent, then it is convergent. (p. 586)
Properties of Absolutely Convergent and Conditionally Convergent series: (p. 588)
- The alternating harmonic series \(\sum\limits_{k=1}^{\infty }\dfrac{(-1)^{k+1}}{k}\) converges. (p. 583).
8.6 Ratio Test, Root Test
- Ratio Test (p. 591)
- Root Test (p. 593)
- Guide for choosing a test (p. 597)
- Tests for convergence and divergence (Table 5; pp. 597-598)
Definitions:
- Power series: \(\sum\limits_{k=0}^{\infty }a_{k}x^{k}\) or \(\sum\limits_{k=0}^{\infty }a_{k}(x-c)^{k},\) where \(c\) is a constant. (p. 600)
- Radius of convergence (p. 602)
- Interval of convergence (p. 602)
Theorems:
- If a power series centered at 0 converges for a number \(x_{0}\neq 0\), then it converges absolutely for all numbers \(x\) for which \(\vert x\vert <\vert x_{0}\vert \). (p. 602)
- If a power series centered at 0 diverges for a number \(x_{1}\), then it diverges for all numbers \(x\) for which \(\vert x\vert>\vert x_{1}\vert \). (p. 602)
- For a power series centered at \(c\), exactly one of the following is true (p. 602):
- The series converges for only \(x=c\).
- The series converges absolutely for all \(x\).
- There is a positive number \(R\) for which the series converges absolutely for all \(x,\) \(\vert x-c \vert <R,\) and diverges for all \(x,\) \(\vert x-c \vert >R\).
Properties of Power Series: (p. 606)
Let \(f(x) =\sum\limits_{k\,=0}^{\infty }a_{k}\,x^{k}\) be a power series in \(x\) having a nonzero radius of convergence \(R\).
- Continuity property: \(\lim\limits_{x\,\rightarrow \,x_{0}}\left( \sum\limits_{k\,=\,0}^{\infty }a_{k}\,x^{k}\right) =\sum\limits_{k\,=\,0}^{\infty }\left( \lim\limits_{x\,\rightarrow \,x_{0}}a_{k}\,x^{k}\right) \) \(=\sum\limits_{k\,=\,0}^{\infty }a_{k}\,x_{0}^{k}\)
- Differentiation property: \(\dfrac{d}{dx}\left( \sum\limits_{k\,=\,0}^{\infty }a_{k}\,x^{k}\right) =\sum\limits_{k\,=\,0}^{\infty }\left( \dfrac{d}{dx}a_{k}\,x^{k}\right) \) \(=\sum\limits_{k\,=\,1}^{\infty }k\,a_{k}\,x^{k-1}\)
- Integration property: \(\int_{0}^{x}\left( \sum\limits_{k\,=\,0}^{\infty }a_{k}\,t^{k}\right) dt=\sum\limits_{k\,=\,0}^{\infty }\left( \int_{0}^{x}a_{k}\,t^{k}~dt\right) \) \(=\sum\limits_{k\,=\,0}^{\infty }\dfrac{a_{k}\,x^{k+1}}{k+1}\)
8.9 Taylor Series; Maclaurin Series
Theorems:
- Taylor series: (p. 613) \[ \begin{eqnarray*} f(x) &=& f\,(c)+f^{\prime} (c)(x-c)+\dfrac{f^{\prime \prime} (c) }{2!}(x-c) ^{2}\\ &&+\cdots +\dfrac{f\,^{(n) }(c)\,}{n!}(x-c)^{n}{+}\cdots =\sum\limits_{k\,=\,0}^{\infty }\dfrac{f^{(k) }(c) }{k!}(x-c) ^{k}\quad \end{eqnarray*} \]
- Maclaurin series (p. 613) \(f(x)=f(0)+f^{\prime} (0)\,x+\dfrac{ f^{\prime \prime} (0) \,x^{2}}{2!}+\cdots +\dfrac{ f^{(n)}(0)\,x^{n}}{n!}+\cdots =\sum\limits_{k\,=\,0}^{\infty }\dfrac{ f^{(k) }(0) }{k!}x^{k}\)
- Taylor’s formula with remainder (p. 614)
- Convergence of a Taylor series (p. 615)
- Binomial series (p. 620)
- Convergence of a binomial series (p. 620)
8.10 Approximations Using Taylor/Maclaurin Expansions
(pp. 623-628)
Section |
You should be able to … |
Example |
Review Exercises |
8.1 |
1 Write the terms of a sequence (p. 539) |
1,2 |
1, 2 |
|
2 Find the \(n\)th term of a sequence (p. 539) |
3, 4 |
3 |
|
3 Use properties of convergent sequences (p. 542) |
5, 6 |
4, 5 |
|
4 Use a related function or the Squeeze Theorem to show a sequence converges (p. 543) |
7–10 |
6, 7 |
|
5 Determine whether a sequence converges or diverges (p. 545) |
11–15 |
8–13 |
8.2 |
1 Determine whether a series has a sum (p. 554) |
1–3 |
14, 15 |
|
2 Analyze a geometric series (p. 557) |
4–6 |
17–20 |
|
3 Analyze the harmonic series (p. 561) |
|
16 |
8.3 |
1 Use the Test for Divergence (p. 567) |
1 |
21 |
|
2 Work with properties of series (p. 567) |
2 |
25–27 |
|
3 Use the Integral Test (p. 569) |
3–5 |
22, 23 |
|
4 Analyze a \(p\)-series (p. 570) |
6 |
24 |
8.4 |
1 Use Comparison Tests for Convergence and Divergence (p. 576) |
1, 2 |
28 |
|
2 Use the Limit Comparison Test (p. 577) |
3, 4 |
28–30 |
8.5 |
1 Determine whether an alternating series converges (p. 583) |
1, 2 |
31–33 |
|
2 Approximate the sum of a convergent alternating series (p. 584) |
3 |
31–33 |
|
3 Determine whether a series converges (p. 586) |
4–6 |
34–37 |
8.6 |
1 Use the Ratio Test (p. 591) |
1,2 |
38, 39 |
|
2 Use the Root Test (p. 593) |
3,4 |
40, 41 |
8.7 |
1 Choose an appropriate test to determine whether a series converges (p. 596) |
|
42–52 |
8.8 |
1 Determine whether a power series converges (p. 600) |
1 |
53(a)–58(a) |
|
2 Find the interval of convergence of a power series (p. 603) |
2–4 |
53(b)–58(b) |
|
3 Define a function using a power series (p. 604) |
5,6 |
59, 60 |
|
4 Use properties of power series (p. 606) |
7–9 |
61 |
8.9 |
1 Express a function as a Taylor series or a Maclaurin series (p. 613) |
1 |
64 |
|
2 Determine the convergence of a Taylor/Maclaurin series (p. 614) |
2 |
|
|
3 Find Taylor/Maclaurin expansions (p. 616) |
3–7 |
62, 63, 65, 66 |
|
4 Work with a binomial series (p. 619) |
8–10 |
67–69 |
8.10 |
1 Approximate functions and their graphs (p. 623) |
1, 2 |
70 |
|
2 Approximate the number \(e;\) approximate logarithms (p. 625) |
3, 4 |
71 |
|
3 Approximate definite integrals (p. 627) |
5 |
72, 73 |