Summary

How are igneous rocks classified? Igneous rocks can be divided into two broad textural classes: coarse-grained rocks, which are intrusive and therefore cooled slowly; and fine-grained rocks, which are extrusive and cooled rapidly. Igneous rocks can also be classified on the basis of their silica content using a scale that runs from felsic (rich in silica) to ultramafic (poor in silica).

How and where do magmas form? Magmas form at places in the lower crust and mantle where temperatures are high enough for partial melting of rock. Because the minerals within a rock melt at different temperatures, the composition of magmas varies with temperature. Pressure raises the melting temperature of rock, and the presence of water lowers it. Because melted rock is less dense than solid rock, magma rises through the surrounding rock, and drops of magma come together to form magma chambers.

How does magmatic differentiation account for the variety of igneous rocks? Because different minerals crystallize at different temperatures, the composition of magma changes as it cools and various minerals are withdrawn by crystallization.

What are the forms of igneous intrusions? Large intrusive igneous bodies are called plutons. The largest plutons are batholiths, which are thick horizontal masses extending from a funnel-shaped central region. Stocks are smaller plutons. Less massive than plutons are sills, which lie parallel to the layers of bedded country rock, and dikes, which cut across those layers. Veins form where water is abundant, either in the magma or in the surrounding country rock.

How do plate tectonic processes affect magma production? Magmas are produced at two types of plate boundaries. At spreading centers, peridotite rises from the mantle and undergoes decompression melting to form basaltic magma. At subduction zones, subducting oceanic lithosphere undergoes fluid-induced melting to generate magmas of varying composition. Mantle plumes within lithospheric plates are also sites of decompression melting that produce basaltic magmas.