Chapter 1. Section 5(17), Problem 4

Step 1

Work It Out
true
true
You must read each slide, and complete any questions on the slide, in sequence.

Question

You are hired as an economic consultant to the countries of Albernia and Brittania. Each country’s current relationship between physical capital per worker and output per worker is given by the curve labeled “Productivity1” in the accompanying diagram. Albernia is at point A and Brittania is at point B.

The graph shows the Productivity curve that originates at the intersection of the horizontal and vertical axes. The horizontal axis is labeled ‘Physical capital per worker’. The vertical axis is labeled ‘Real GDP per worker’. There are two points, A and B, indicated on the productivity curve. Point A corresponds to a value of 10,000 dollars on the horizontal axis and 20,000 dollars on the vertical axis. Point B corresponds to a value of 30,000 dollars on the horizontal axis and 40,000 dollars on the vertical axis.
nZDel5CWxhlA/4LXMMeYLyFlpZgRg6DwuLcEgC4xnSXVMErEcL3qP+OHs0DgcvueFVp6BOPhT6krlYyHQI1R5Zw08kSNqbU6yc7VCWRv/5sp7eCYAXi6Qmqq3BQ6yhuTGX02MZvjsJ+E7gNnvum0Do9LQ7jNDbfkCAEylMl8P1pZ8wAY2sCcwybcpn/vyBiIw9Ze4CVlgmfBwygRuJ4GiMWkpkz2lNuslDnLJ5QNwTeHmpCMxiR+ryeeqqtDhbh6JGob+s4YqQfobYQdqq2C48nf8Cg+sE2qfhPOXRwADKJy2u0qwhnAzflqaVMSS+YLTmWbCKD3OPkU/35B6pZa9de0OMPM/ne7H3LjU7YCtFC7YppVCyIo4lYw/kma/EjmJ99AQw5q6567lGyxho8IlwyRmg8xbh0eP1+UBLcQASPzmrVXE4F3uv8fxFrQoGXi8J0+MimqvYgehYxhNR1zDe9X7UoVzoeaDAjHPeNK3XvXrXgOPwscDlmNxX+1V0IvK1F+Awv56sErH+iq86jzwIp1pxXVYQGsIcospEKALJWfGr1aF4vTar99eOtITtpPDgOyulfOl6v5xv8Un3SfYeuUMH+4D2r+knQPeqn82TYCPHCH3cUzPy5TDc+w0jkIH8RSUtmkTvSqHRQIA4eXD4ZhmxhbW7ifz3RdBbttbtr9hyyLtqpKDSrHGyWvs0HOPlJD5W4HQjTIlY+VLLObQjsHVC+/1E8IQ90JsR1dU98Z9ryNO8mVtzjDhhA2c/OyhO08Pf/DIhTGM6BuDbigo4bqjbdJwGLzVZDstMLlws3wK8Nt+uFccSHoMeUV+17lhi0xv+y/0XGCgh5ZQECmDA0JOmH1JRmHaZ2jAMxFm6sZjFmgzSYdr4DSS1BpauYbfqV5nKi5+yvpuoS3rEiOBY0QN7yNODiv0yqC85hMWDj3f3zMiKygVt+IDWpCphTmOb4hnOAeadVLWCnI3TGhbCJEZRuZyolFCboHnTBUUDahNpJzLC/tLO4r8NfAkccPOp1hZfa1OJUup1WCHQOGU+WcUtjQKXKFPIxcLFbUirxpWXQ/TnJN0ERu02jOp9F6spOVYK2laaK9AyPgLcWMcexQ6l8cb9179Hon0rtDZ3xydt4+3z/oEvDJRxdFggSA927azQsg70RUG8X7Qnyd4WGVmr5AQFX40uIaF88fh/8Fl8DlYecIVKYOtPEvFeOtIezXTAyAdAHo53u5ZcNzInbTavZbHq3uVKbCQEFnuwZhjvG3On9+7KSqeCTNjg+2ZQy/zvKmZ91enBRJiD6rJ3UFmX0FPJY+xkr/FyPy7+D3nAMhZflEtDuqwEscoKDiJO+uWDJJCYiELXn2qSDzwr3NZdYes3f1c6vyOfjRDOS1lRpaShPs04YOMWdz0Q/l6veaSvSXCyrjeWNOwyzNUsV23Ks8dg9l3RC/bG8v+7VXLejk9kA7sKaF1gj4KgPqo3hwBJsOXMzwHIBLyXQn2qipxuCFo+o8LCZ2MxqSBloYYHwd9Ivhn2Aq6tF4IEraY4rsLJN0OZHmGWKRo8Za4DL7o7GOoC4zfVx7Ba0rYrg8KQoKWM8B+ip+l158+8bxH0WuurExG5/GmC4EHuBOekcTADmjNKixM44IWOUmW1CTxJGXQV5DKEaBuqJW86ZmOmQsfnaWhLc/Vg8xXK/ddX15aiwQf3TgvwRZ0RzvNgw++5js2ChSP2WLokYGWWFN1cy7YUEDB1uRSuhhxyLfsd6OAUzbwLCIHMvVlS4fJz+HBXpsVO4vCel2YWaGEIAQ2YMzwJOsMytycxv++E1qb7hM0kDamu99Eb2BgOz7PV82QYghQ+n5nHZBwJIfqguF4aEU0hGfOj9t5yzMNehBdWY8AeQBWNpb2iQ57Q+c72AfaTOXJ4dtmtWWu99AhMS5jhQF8FjHTaiqHy17oLgZjIhRxsoA5ENPzw+BVtM8npqNvAE7EfU0aUMu9FG5pG2hzq+S9f7cx1wmfJj8uBijldHqN1xTJmzu6IXH0kXAsrJuwaOGNYbS62J/HiTIeALsbo/62Cb8IUEo+74uFTN1qxQqWBwec9Vj3PfPex2eIwJrhSrAv0kXLsByLTSEykwEyQSMw6fPwO7K4U8SL5UDvKp72Yyib8tuK6hMPFJtzxb7fDNQRprslpI0zj9lrKpG4y+ofucjumLrIFRM7WHEiwqNhyyH2cY3cIqQVGDEXLDAVFt8ytirohg9Xe7tdFYkknKKxGte5+bF3u3OBw2Py801i3FlCelgBuYRZJfi/frw72ILtgUMEBfDwMXyv9wg+6yhDh6rdChr7qlnLHSxMj2ifm61LQSIRzClqQaydNEYcvFR2AZuE46HGmuX55PV5++Fy7/eXKabEgejChFQXZvY7t65IiZYPx2E8TYv+M18OVpaU0BCbUaV/dBYsmNXl9ptl9tL2tIR8tKxRK77xx0awwyA5bae1UmZaHC48oloutqqxL9RnXYlpc7sWbrfIuqxTF0NRZeKRZfjLB4Ijz/YIf9z0tWkr2Ie8Wdyssbq9CF3WShzsWebAQu2Tn6MBOC8APMYokviuEesBGjSHVeVPx7PWQBQn4/vyTAaKHIzv3inRK6fz+CMGw371zBvZDlYfkNjh9Hum/mRP7adSDVtETKlDQCIU4ufqbyqD5wVMGfDFW+ncjEGla7ovRjsjfT/s+egDpD5lyCAHUxTrg4Sc2NteBqTiPKBh5PZKKdErizg2t2fM2aLwdvDnxBi4htT/ndZprvx/mvMGoi4IdlAtjtzGHt4cO6Ow7MDK7oUdg1w7pGDPpLMhvIH2PGPqV2mtRQck2wQYWy98PZlW8F6rZYz5Qand8y7G+x8bBAntOH9BJzj7gvCaA7bdXlxQXUuZwLQEo+IJj38mXeGoU/pwPCxuRyexlfgGArepZi4CJBB
0:49

Step 2

Question

WXbRTBCC5PiQzhl9kRaPSvPvY3clseVT9jarnKVDlCwaja0GMTaN6aAuMt3lbZcEZDos9wy3Fp7caJvvQprmMVJ0UZgxRykbHGUpWyNkJM8cKWmtZbsyLLBYOqdwWEu0TVq7cMNAW7E/R5qx5sjcTKkJahpdaHuhBm9tMkG013wHHHNDaO63kZf0vM6iMVG4CMFcd/VgxpICGlolTGOYTwrlDBaJVB29EkEuWx/a7ITMFv59q0fC0vn9ud9rdvUneopr0Gy34hF3bUwUJ+a5Vji2J6YPqgzu30qgiAae6FWKlKGtQVN6sYaovEaikYFXWmrJIwwX0HhwQiLyiKsXzzEtrsUfZOml8CiRDT24KT/LHFp3h8eMMOpUky+S3izrp8PlhjRf8cf9wAvx+9egRkcKxmaONt8xczsAOsKs0PcbEopIdx612Fm20Vezwfsjrfjz7Af9ZKo5gXQ5JLDYI7wRydFUH+tjAFmewZUWAwGe2HC4rxEztX051V7b2zZ7kC1vxBdPqK1SUoSNW747TNnFtxQIiUlw3PERaMa2xRpGzuIJgxdAhg0P/a7VNFjOyOU4rNWRqyycVaCuXVYxyLS9/YDVZbKG3AdrCJdsHzyt6K6Qx/OnIf9iWZmzUwpn+Ac6KKRVi8qKtvt2DxzzgQrsGIPjKPZcRW4XIA1tmlEwBQas3piDifoiQwvlj1OcBcYdalGdRYa5rYXZJfghG05bB1ol5PoQdLSqdfswoZDG87ERahNZxJf+WJnURDhppx9wi7HI1pW3q0SKSHwHeVE66FQWX5rsc3w26kGWnU4/0nR9RanmDXUAlP85gCNdcH21Odj7aMLfQJcYiF1oXVWziZw/B8WzHoD+OAAL3LiSXCrV58qW5lcqel/HlIj1y2r4+FMGd283bRYYZPjLEElZJ60dyB5r5oThMrgOvLmsLtwtbtVUfGHOqkIxJG8AcwxbgmbllooHY5mYkxr8pnSTi6kMVvuI47Dx/PpmYsJPIcRmtyQ1LDw8FmWV2zYH1oexp+AFq2X3YHj5/3DepWPX1n++bnS3QefkV8eonk88/c/iLQj+5GCp8CjbqRcXmeLUoVhxsQ+8zTB4Kawvm8LvceVPrOgyFPxdnVt5gC4KZxHKVqKlgmXttkQM4uNCnW7/OpjZ8nVlyTHelWGpHIK0IJDEOjVWCFv0K4c+a+/k5qFluOnGLhl0dKv4o+NPgwmfT2X8Y0YcNoJMEk6OvnOirbONvijq3a58A2wNKiw0x6CetPnU9YMamx1jqyMIWu4OznqkhcJfRjaZI5YfelUrT+x4+NZAe3oP6fsiyF+ioNsSuLHN+pcgYrB5+j08SLDF4yfJIIvlOUg7oLGegX+yU6At77V4sd9SFw9kMj7OLcXn2RjaF7UKkpI1We8ssCJGo1FpNcLFOPQsqo3mopfh9XkU/RbucbVp4QfMGrH+Q4dK3Jtt76sqBui0Mesqw3hO4krHGjxElb9gDddgBynvQQnj/wk08Rd6dST26IKaha31044OL9r90fVK4TSB4X1fcq0lpbrfp6MaaTGnab/pdej+vWfz15peMjas1m5Z8svTRmvdldVh6SfTzpRalENdA61lcAcR3awIvbAKhl3b0LkKPpRjy+ztkxGyT+cWBLTQzBit17At3Q569tJDtetwhwQYxokoa59kzoq2Nn40BgfvkL0R8n70INL0wcK6UG6Q4C2wF3jnGx+6NYF1bOu+tL+ftcmav8Sc7MFaC32matWfOG9mMRg491Ge0bzfVKjjYhxBTlGTvjv55IB9U1r+DaYdOJ8MQsfTvA8BRdr07YLdAQ8/0E5m//sL8qO9M7H7IWv0DlAt85i4ipZ3zrghQZRSlc5GVaQWa7Reilx97Y7orMj11wtHrKrwxX/aCd21WufD9jFs3v5ytVih5eNSqUvZulT5bFgXdfQ3Ew/PUJup9U/C3GYkKZwE0nZObFSP/+qBiGq/PoY3PFjDSye/qVqUJWX/kk/Jx7dtpdMncJzsRNmYWhwf0H3PbFG/HQN+p/CRK2E1ZeYmPq5hAm6oVy9PgVVwK0x0bKgCxrtHZRrW0yP0Xw7B7iQdBXGwkA9jBAAn+tKeB2prbdB/m/Vi5kmY8zkdN9HdoALTzfwqtFhEhtgJ5rKPaP25wzmc6SfRIx4GULZAA9LZbW3czWzNGA6K0GlkiIA09LKW9TCSl8yGzsjKmptR3NztNeuzvK6AsQ6GHlw5JPwIjqzzQRT5pL9i0NGbvT/OWW5ApjfbzPUnmtDkyP296lxWfMxVrs+oDUv9fdD3xu/O8GT2urSeatOvoz6C4BdS3nwx1LJepJiTjH4JLoOuFyeT57O1ZRjTJWb3N7dM2Qh8+FjKgQG3arc4JNh737kLlW80Utcrj40fBmj6lLaIfaC0s4yiCXoGPk4H7sv7UBTTsl2fZAsPF8SjbSd7krDbpzQ9xkatgUSth2BVfPSNTSEsaVJhW78LzGMTK6HVtR7UbI78VQkm3vNHMNb9phFscKmHYLH42r3iCztEs2N07FACT2O0dCbRBVhJIS2LQ+VSJlopY2LC0BqqVA6TbIacF52YmFeQ6sSxN6RJ3QQW7HeujUokQ8dfsWa8tCcQ0UX1GZHV3bdPrVm2hxXiONJ5yco9H68Fg2HS7zUGY3l+GKmagfQQT1aS7BVJpFF8q5LRZz8nCnAZyMIYFn3CF/nRcOaP6k/lWERDq7f0k9IToNRCNWxouFEy/p1J9uLrjcBT7NkL7mHqQpv5nlFq0rBRutIjb7vmjLiL/RDSCJ8wwZND/DJd7KaCTojna9EodehPZGNbG67AGjTjdMBwEJTeQngsXPznqihMFShRX3srjwZ9nt1Hmy68zPvEmCT0aHPW95kpRMyy36A9OY0A9xmtF0XMT+HCFlbuewvSA0YKGP/wo1djUKcjhwtxmIiPGEV5E1SoM8xRed4l17jNbL5J1mNdwgVpyWl1Y6TS6q1e4W6vxociSX1d57aekkt+G3h11syGFgVvaH/H5Y1jEP7ZR27YAYaXqzBxFIYvhke9CdVup3aESCgcoxlRKGBImN7s9n011lVMse+ujJBfeArEyyNSRfD6OZw7/GK2z1428HGQt5DJ9LO6EuOfsa53zl8UiLDHUHfKwFJ7FFE3ch92RdR0L5VbfWTM131D0f8LAASLY6cz9DnIpk1qeFGsA0K7sE4HE0NXW4I89ts7zI/Xvsji8E4f6HmUKhATY55/XPqIkGWG1sxN08oHvvLcDe7fS4E05zdyl6zsdVHK43/OTHlo8EpMUUHeI5K1KQN0mCHBPbegzYo7yhteDNQTsk58o5m+irKY3AnUZ/UfEUKlrle2XD2nn3KTMyZw/sWk0R4HEsjrki1gh6WxS+kWeg7qSPISboUPvf4Ojh05NdS0E8bVtGpLkAxtTnM6O3o8/wY5KTJ8CZh1QTMGfUQfAO1uT/QfW/8kGf65N1XJzKfsLc4PPE1x9r5kXlsatJa1n9swkYWKGe82lHgdSDyW5qO6uYplmj0sc58cc8L+b9eXLy7lZ8lWMvFvvWheOoYYa5Kqelp9htjqrzgrFc7L/1toe1R+IcaVO83FS2iY01/4HRxdXVJK9r/CvO7BAw8UhL45BLB4lCjJADrSnHkKwCC2N9OzUQFn3K1lz5GOzOubZGagarZCoEyUEIP7R56oV/sv3ey7LScDzn5XCz+IMPMCETPuvEsBKA==
0:37

Step 3

Question

x37p2S1wZp3YeqQ3rn7F0PsQexi3fxNRK0+wzwHf3HFVJmEXKU0sDlZicXwEHivZqbHxKa8N0lYEtcrYexDT1yhiz3XkslksC7cKb7SFw90fCJyB1BFQ/9FHVoIvzO59+fqS9DWGce81+TniKddnD8Bx6xgNIbSIXbpFar46jipGLl3xWhzHNxBOfO7oX8GHsP9fuDCgYggHAHbth1q3JRv4f9G0RCJmwWR7yeTmRQiKlQT8+W+L6/7bTsLl1Lx5s42VZ0ldMNkS87ETP/Pxw4zPUOp9BMwueshLXDQa3ddA7OmsQ+6CP03ZRKc0E5ivJCaihAL+wAINUAiijU+e3k5n2kVmU3sbgNibkjjzQGtqPPTY82iVN01pnm9wuqXCcXlKNJ+ltnFskp4N1St38iJqz7ZP+IYqI80mUJlQdJJ7h1rMzv6Xqc3D3oSn08I7sctkIwZHYnHX9z8K8C3JEAdKMS6oM79bGuK1Hwy7GRdyRKt5ZB1BzMkdp2K6ZqEMEbzW8Yidp5IC646qt+SmKwOJYP0BIGK93aypwLSYLoqd2334G+cJ9Kd+I9RGhg8Qvjoc6BbjeQhYm7eq7lmI4RDfaRCXZzreBkX8AdBz32nbCa8F3pv+S9YW2WHdGft17S42iwr2KgsHXqVi9TAPIY9YUZ3g0SC0DDbCM+yRPWEIee/0Z31Y1RBnll2lOEsnoV1OQXqNehnaRnC+/qrm7oby/U2XksitBeYnaBXrxC57Tthgj6ILg7xhtCKpVb7KusmCtrHUQJIB6AkCkZNHxo/7q/GjZ8HE5fd3anhPtpyy71BGyMxCo7vVO0inGg/LoXBpkl+CXIUOM8c5CxbyM0vXXeziU6Hj3CUSGQq8/mUMhctUsh5mMWPOLjdXvOEHECR3VT7/S5/5MjNJhVRN+h0Nw/Ld8yOaQGWm0tpUhdOWMaWMhGPdN0jyNCu3UDn7pSWETEILOhhLoamnKhSWD5ElznB+0o0+Xi8Tw5lsudXn6rBHzqh8Y43kf4c1CT4nUZ0YqVVSxmRRy/mstFHJxoDO2Z1jC1EGLylk2LkOJrN5dcWVOYwZJ/cj1k0lr8bP04+SXQYDcrJf9zDuJuWDc2cwTokYsX5E9emLShkPm5mG7QtQFz9aprK3F0U1AQdONkFfvMew+u8zWKBV0jp4J8i45X9xCKdwawwGJKBqY+jAlEks6JDJxeB+DhPP64iygavz+S7XWVSOfyd9IWWLJWGzTTgca4F/Bn8IQlvJzLfvPnS7WnXswdJ0tiG6vIZpzBHm16/xGyN2/fYE8Lcq0vcYt3D0wkRYtmIULOXDYCdTLJ3daNxTBRzBqfmUr+pH/df+sXbDS0iS1QVV4Zfkt7CiYVX1Aat3VeOE6jMe8CKJn6jJZyu3e2S0ILNvNS4iOFkvw8sbnBBMbMcI71glDuFHSbYuB86xVPcg76zSefXd9NTp9CpB3uZSw87Z3dqCDXC+iUocYTXPNJJ5neS1YNALHe23vG8NhQ0ojbqZ55VCWS4d2wTaHFhvCvgdfA9q8hX4bF149aYZQ4jx2o02Z+ZaA+1NCT+IZwU+5fZhG54yaS0CibvTxYTlQGo4kbX2/vCprWQvLOXpkvM8L4OHWl1rHOQWWMapLNbvaxCJQ3oKlRmjHkXtwDOWNa0G15LJD8zxaTOfAkm6KtwH7JCPot+lRBSUAeUMqzclwBrisZsi6tiy0r9q/QShn+4lmG5tMmSlFk7GCg+VQbvfdLUU60GpiPE1u4DAGd9TcToi31+TAy+WSchhxAm4SreLb18UWQXFTstNaYlNngA7KHvqOmSHLMvxobblzrgXVMrYwI9y2zfgFdjkZOq5BLlaCMMRMrqO11V4zBYUiYnsYYTfpv/kqvb7OMEiNHj3OYYFY+O3WlSE3AFqXrMSlx8jxNB/sQq+LGGj1tVzuhhjHl+d2W1DTB93YULWObIGl9xOShH3U67k5i7KqIOJT75c+xjCIe0XewhjWiI1JZmqWu/i7pl4cPpdslfwfZ1G8dclOqGRLLt15jcf7/JOKqsHdUxvA2XgLiBKhqgKM3tuGEubbwbbTKRzGJJuO5u3gATrNCVgaIF8mpU9dPhc+wqCEYuUzcuQuvMJbEVm9/5hNjEOIV3nR7RNu7d0vAMj63uYIemrBNN4m6jJ/O9dpgO7/RqK2qVC2DyYaH72STBRWwGa08k1g7PoV1BAdKqRKz1sie78sAPKStJfZvnooAGOYz2FQzsJB40gWM9mBy+KXc5VZestUy6e9hwOVp4FsqKbkmY+Wu9pNFkoyM8iIQWAam/l7btTQJnZrqDDwXSjrXCrtOjlNS3UlsDWiWw2yzo0Q3VS12UVEFuso3A8VjNlQubEcEoUODuvaoZm0a91hOmBIc2NGRf9oz4WRCgypEDd5BVT1jO9lWvyPl+XaDIe+Gcr1LVa7RUCnwhWHmY4YvzE4Iiq7vpyluICYHAB++4RhfvBOVLm+xj83nU0AyfyaeUHsxfGu1gGr5+2h424t2bfOUXBt8Rsj0VH/zDpaOCxs/F7B1W3EL3V/ivj9lsSbdYZ/AMiL5rcYJV9Nz6/bWGiYOeH8RB3Hwy3zYPqwH/rXlSgMwqp/hOJ8mQinX0eGCub/axKHIDHhbbyW5x/pED5drFrvClbA/20lU14f4BEHZHcCRkkiMmXLIMT/kYK1NMckI5LSsqV/h910kP14SJwtITvwZkZj3vs1rO5oQhq7+PnR5ZYP0OinUVOglKGDfFilxylvv1qwoLwA67LNCTDedbVaUo9WWUA/kqvdFLyrF6lmvexKF6/DGYXRkovWnPIQSygwbLRs3PXiFxdWpzRCNnDXLaKMAKgzkXAzQHrTmHmTmmmutQlL7Oe+v3oRifihMRYcZ4Y2GPWxefzKy717nITZkmJ5d0JU1ni+n+Xk9+pkySwxk/iWueVbOmDVwAUAjPCHNHwBnTvMPpCMnXhZ7ddDhqj2Atnmmf3663VjyifzNn7I5yYSyRC2sEvyq9c9xIG03MLle9aZr3ZNBan3x5pFcO7ijH4/xmeTwbU/wgTP6+PLSsq61a6SA1g3MHYMrwB9z7NDjWgOuC7a0jcysYA0DecJDUl+tVEVWbdfb4sLNnnuOVkKRmkNwypAnJs1TrVxj3kfopSoaDDOIWpu8REqaxgK93bdNhyKsgVD/YkguB9qw7zSNoGi1bMFM4Wrxl95q3G0tC3W+xs+CXb9xlTbXIEqcKp3UZSUstwbzrl9FRhTfO8K6kgCUCUx1TGMIjC1rOZvTaFtxvpoj7/p6ihki3HYyn+d/5pb9DoStbEmlVrP+/1JpgU3r6rRW4ECt4ycvm62WWL4fyCjbnGPWPiEJY+3CLJHKj7emwntCP8Dld9beF+PSSZbZrV9Rq9CLXLuBJKiAOTVPub6uREAYprXfPaRIDvoCeAvLueIgTC2oeWvbLfUFKA8EIn0vrec+pKzZg+68x83+BSmMbWZRUUZ5rlNz5CPjgflFpDnISVGb2UhasH2svQbYTekz4oOk99vNEk+nCz1tqmRoD3spebVbmrAGISVmw51vibz9ngYrNZkq6CSK4qKmmH96OhqIJdNxmpEULPo0t/I5G63gm8YGhy0V/bKKrMJzXueRSvkpCA8fvFVylo/AknNil/Dn9VcIKNLlYjhIii/Fna06iOPTpi/86xr0EMDXesabXXMheffOf1wWbIRANvfh8al2X6uT3iIq0t4EzPD5gMLOZzUH3lHUo7ffK5KP/mFrmP84n4PU2zichU2NwCuyw/9irl6GQBlFyhfSVjiiP5wtmk32IPEqZVP9yJuR7p50oOxKBNgPi6q+uTBu5WX0KEtWbjpiUzb+hqkm5bBpErsVCOK6sBuShN7yxknj65esCZ4dB3xNROzjk5Sj+8C5ZEqstOuiwKLobIP93zOlt/XpNxTQ1VoYp3Vs0nzmfB7FgJcy1zGx6/TK10tXYvLD8KV4KeNPnfcKPpm6NLBx5IQbCTmkIFgcZvz3QZ11wgiAHLIWBBDNC8C0RMZurd5SAF6tEQGEzrL3+Vg/fv8jkL4IcnpnC8IEgYlcLWQjrurC9gkPNhIGChKpdRlmQLngR7Kjq/ePlGlDkBTZqTnkxkYgE4Ugu6XCXW+5WNwCcZS6O1842Yr8vMWkOs5I1G5xF2AnXuODnPOBHaoGJUpku7t9ND98xwgXvNS0dP8WsRRSfS02zqKrOBC3ldOJ57YREDTNo21JwQ/VXZBSw2YYxAfELJm0c/PZ7skL0eYqjLwSi5S8XLqqblkcJz2blM12p7uCz/huaCd9vgYn2LHL0lJ3QyBh+3aAqf3Otijr5/zfr9S58DDUg4AB7QTf6cgvCi7qysQyEK1YehnTDKGzlfqyrlvAwAOIoB1qYEfOf0yh7pcvgV6dp90X1EZ0LrmJs73w5+Oovh7FyG9fbWSdp8pQNNrS9KJSG7NSPWpSC63qcJlbh+zksbeRdedGcZff6PM0/6ZYzK+W/rTK5bHtUlvNWtItzO9axL2dVeNjOoC4wCd7o9qOWyccqQy/Z7WIyd2FTsMViuzGXmhTPMqXsyn8P08n8ua4lzx/hoa/q3n/Uf5GswhYUjt7/tZ2sVaVQEVzjrj67hf3a8q1Ofq8pbqOpDvCW1JkIMA9WaDFBYM0vRxZ7a20v5oDOm2uQsnqWWw9dUrt+OU6mMJXOUZnXM9gtrABNfEyUdmXX2gHo6aSFCs85hOOOg2OZTfWZatI+W5PZOXZ7pY48=
0:27