Chapter 1. Section 12(24), Problem 6

Step 1

Work It Out
true
true
You must read each slide, and complete any questions on the slide, in sequence.

Question

Due to historical differences, countries often differ in how quickly a change in actual inflation is incorporated into a change in expected inflation. In a country such as Japan, which has had very little inflation in recent memory, it will take longer for a change in the actual inflation rate to be reflected in a corresponding change in the expected inflation rate. In contrast, in a country such as Zimbabwe, which has recently had very high inflation, a change in the actual inflation rate will immediately be reflected in a corresponding change in the expected inflation rate.

EULeJ9IkiOGGdlUJpHSv+rorH5kS0k0Mk5xtYBtFdLWV1HlR1jM7nl3uyrFFCw/FJOBsFowaT7U9x3M+mphqOR1CyKDqqdYHaokWsYOXQn2B2gcYgCzlR/KlUWZWlJA41eTg7aKJOGkoKO7acI+ZTGsb2kn7KVYYPW8Cwd7cJ19KeAhEFKR+SdIkvP2H6wvtNlCwgagAF+U9DmUpXjUUWUjk3/g/HibDqPi9Ra7nw4bA0hh47yWrfa0UZx28mvH12KPgSKXB71LL57XIUuoSduys4VO5D6kaTqENfBCT0KtrXOH8ALEA4scHkJn0WkXFRvvl+EQgvV6CiFE56EysxYJhA7U7hb9AvIAm80xq+oDek559lY60JKH4zuspfATPv6OksB1i86+Z+so5ooTzzFYFJQKi6C0BspLd3sc+CFp5tNtf0TQdMhK6RJdFpgrVd+pEnECNXHENNaCWXgD6pymx8MouVFlwprsyhUKv3Pt0xA/+QbVW/POhAdViRE/Gi3R5u9leCaGKJ6Hde7RywWQ/m9KbgZa5zKyph+27rDJ87DDjDOcPYdYzd+yZTfn9AeRZGn63cTD2Gz2s/Fev6wn8oXwnIsa1RWTEhiR1Ict+foiagmA1mCeigvkyAxZMshqL+7B1QK7Ud3wRnxjU3QrYbPSvYJQWciLIZCTwSCa1HCRDX///hGj5wx0AQ0L1dbbl8FdUEGyICOQX7524lQwMVuw6cly0jkYLDlJaqsKHpAe2lWtu9zeaUzja3CAUFxXUOgnjM7JryxO1jMouKQKopdUqn4U/mNqBE5ydPhBONuOg1qx/PGWT/vm84HLfKLGAPwVnG7bO60KI/hH0FoMGksTsY5dkJ5dd+/K1a9I27X1po82aeiQCeLlOU6GQtlyl1ku6BFZPVxW6K7yIZhyrQBTtADjIsqKeKsndGGeWCe1Mwiu6hr+sE9oLRhmPg37PnrwhHpRI/VtYT1vTuEk4n+NeOrxsj2EBB5y83KQUk3osGLv68qhNsXqrycO41pxVttCUrw4j0BYZpC8z7Wp3QYvRCZMZfmbuIjoJSB2SnYhXap9XMSHngasEc23pKunrn8I9PwrMNsRh6Ca1uin7sC3wdKAyBvpcJ1s4vMEpZVA6tH5VEpp2oJpuq06pEKwWhkdVYSuN7akRp/vYIKUHFBg/GKISnbxdq6Ijx9xAjaaugF0wuY2d3lFhGNEjaU4Iswomx4UFtOwdQTzt10pmLxvJiocLeCD42R6dvuSrgVfdjfW/LEVCW9D3iP6vC4R54+Sb3cTKev/jcmK2lTWZM4EN1QB797O3Zv0QXC3NyahChtY5/JkWvZQ4zun76T3o5Jps+zgL95yYIYFzwhAquuKPDndNtIBk4pQoKjjBxzPy+mqEUTa40STa4o1X6oGcxpz+qSX9S/2owjkvg/c+Etnog/CoX3FWdOLvGLF9v3nE6l7djgYwqbepGP+y0O2zpgKTG17p9ISQSD+4oZWV+ephuJtbVZ/vGvCfGkRyhyHzaAeNaG6Z5Hja9qWKn98wMXYSYm2l/IkQI/kATra0JujqWn+Q9u3pOokkYAgdOUuscLfVtg+vlc34xgw9uvCUYAwpWyyeT2/2+wckSZIx+cNhaEHNn4r7hlmqC8OoQwUqPLCWDLHyfEeUDcx16k7JZlri/NIP9EAdo/VbQqwcULPqbXqT9T9CJjLDaHbfsV3E0i0/TlpbfUdkM8HBVmE045hRdk2Zib59ijIi7DS7x0aS3F/gFL2j/IC3P95k4yM2BWr06Pm6S64Aw6NKe310MZyHuBb/i3wvY0fSsifqdcM15FXLZvm9brQ96FUwpVmZRRF9uaLy3WNYGp9E2Np0Jx0VuiuocbS7WOGMtCvySDVGdNhLo4VXGp1kPi9uUrAk1hfdxP1HuqO3Wld24RnvcjoVOHhS9oFLzd2E6XJ7baU8VJd9DMXQ/uSHgTQSraKKRxCwZu6QuN1J9TusfWCWnmUadkqOMmnCLrmQBXcK+glXpKmMl5UDUS1ZwcKze+NIT/W/QNoQ9KSiDWdstETIYDP68bxXNg9n9IUKCnoAM1ua2LSFaQteZyFm5k8PVRk2hCWPzrUiytBkArEu4tVVBLWTmFv0AKr7Iq6xp93OPGayfLa+Q5v5ZRUZjJxYHF4g1Lr242I2Os8IoM7sSXafRWMW2D1N1JoJvBNuU5Zl02MBrewYV/O/9mR7pMVorRsJhDbrFLAUK7pOLMY5sPm/9E5bJuP2V9AZikIVTIUgBgqAYF9/xXVBOqwme3apXL+l7cr7XPMcQpZtx6E8ewwfoUZW91HdSvKccpVEj3/BokmR9IcESZ6kW1Mobn/G8FDLDPebXFApfgS/wszn5EzB1omU2S9E9GW7cJq/K+TnnL7Aq2/cCroyST4l9AePK2TJiqapUetzooGS2QndPqkz55Ro6Vu3xrcVLMat9KDd8kMiEf1zf+pzmAWmm/URMPfVJw2v0vNh+SHz9riUKk+yLCbNwJDlM0tFRMKsGAnKmNUC8ju4KRUXmdWylSiG0cMUveXAJjaRuGr75gKYfvsSLPMS374nVMnv4uXcrY8N4XAhyuK5Wy+79ggSFDZks9q65wEQvx0gF/kWCnFcioy41+Hj4tldCzMFMbV/a+MTlHeemWdpuZNsKlmicUXJ3Xs8AWkB5Yq5QIBHlNL/YaNkzY7yHULNffpmZUaR0DcnVYMAbYKPMB5lWRBRH1QniDgSEQyrn12GrfVmFqBiKSXJp4LkSQQfjPPZuEXK3E3Ayfi+GN1uO8c2LBHRDC2RWmkEEZ6hJRujSfWPfS/mDkGVZzD1oeVo3iz3ghJM6ayx0/VeNVTFoUVpd5ZHHJQYpGk5fYPMrztNIeDa1QFJXu26nOnBs7UvKgIGMcma6ZtKcQRS6Jp5HuQKPwpkapa2fQ+4EoJ6OLkzCOQ3+25H2xJug6UioitLUn+fa4XqpDUBW7k6IApeK/xH3bLS0jtcOjXTZmzzSfrSPRNw+5CuNxF2w5XGcKVdsiW3XCUSg4N8KgwRgc00KS/Dk8lShEX+2CPhUUAr3iVaeOIdbyVnMjirf0Cmjl+bukxYzNc3RJWuoQyZiSGng67MsiIElbWYKUxzh95GkeJF0blRZnExbUkeVoX1ijAJdpFf3JFix/ljLXbdjek4hkkaEtsBNkKwqBBwirCOIFOagQCbDGNfYmGevQsNLXwPLsHk34L/yVX9qhValwzoJXjFZmuL2JbPiMEoa1xDd4P/RKowpruuBQ2tbYiEHT7EPCaRNJIbE48Dd7b4/zt3FJQJRi8bbGdkdhoAnoFrJSWtRDZvfeQCjJ8YK/RsRHhVqht2kXb+tJHuKN3w/9NAy1raHKydCa9vcQyXolwcfvFRBBC6b8AoyeTLRXEKZhHK6DaB5cdePj6csz1yvj/SL1DBsq4MtN/99/Ag0WR+TQvrsxDzZeJFdUyIld+qwTzGHxGNMPpgES6q0oGt1Y8t2ZIadaiSKLmF7lHj0a87yLm/pmsOUHoPKRrquMLZi33bOPLidgMMOtx/yQNHELsk4wVZsd9DUv+9YZcE/i8z23M+84QDPGHwIJMJ9ZQus7756/parvVUjWbSvGuwiXMtmmYhfFE6yt/G56YMO0rj93F9TrX8hbdNYHUPd4KBX6m+KzdJUCkrtjXxhJauncEiRLk2Ne2DrYmSNG3JhAtckBNqB6DreN3RqZPQI8M/9tUdYWel3/HUcNVYIamDJsp0Yw2YWCIVz+YQxiTh2XlG4pcag9QGvB74GbsOHmKjZph4s5OA5DRkFvunYJ4BeTFxrdEWCZvWduDwOHJSG8oljrCGW3Gn/Yxd5sFMZlumugWVA4znCAsAooElReeaHj6ik5Lri6zckC6pi5zYkiExOkrf0dgHsrPLRTgkbCTzV4nwYOtjDxD37rZYJvC1rkCNnMeEiaQcv+wcOjrXzWc1aOa9bE+0CNz66d6ia3K0jLAlUx+V0WhZwVMswluZlppiCH+lSWM05p8/kIZ2NuCUogsxf7eGkRct4K1L1uDZmUGIP/EJIKb9BBLigKnOL4kUoWAHj1WI/OPR8WOgEMc2sUcs0wtgigGHoVALbgK5hnNwdOuz1wCzmEX6Cu2kJFFKtI7uhxUdClfeJWMevYJQRGhFw7SSYnT84ppryODnNS4sRUxKpFPWOi5UJJ08mAA5zwb2CMdsEKpAs3B5JN9XcPNnZnE=
1:24

Step 2

Question

dszROzIu+P14TXVzq368yMgbRM/QxhL0s4qjqn6T+7xKgkBbNC6BLR9PjnpDPswQW7q9J92+i5zFGvTHJpOKKRNM4EEpBq7j4ugA4seQUmAd2IGbuywEm4SvIBHuNJhgH318u9stO9spvmLHCAfgoZiaZVl4ggfSwfYMRbvDDvjeO+ufJjBtEVO92/ffyiogkjQTLaOX9oDebltd3HWeEbL0t8MDW6pXWWcMo/tABghuJrkxKnLFQDq3wO4ozB/tNH8jzTh7asGHTZ69dqlH3RzQSFLV9JYYC5AX+cftsZPS7SnlYIkWAUIQ8NQ/jWnua0wShO0bcpIFZlisG43s9SSVspEyG8XgqYvRr1CUvj0SPQBSkOXHhpqLNPNHU25+0J/KtqtlietjvMOloyrDCEQaGRcH/DjHQTpMIeCAlOQ0XXHthIUZcEFLUOFQv1vtS2qP1u6LHECT+sM/oatK07z2y5SJkjt31pX2quX3Lc1i//gcDT+V2PPp0anBL59hLcHzYVi9O7AFN8RPs7lW88N8AcuHZXSV1ottadj0XEv6CIzWKymqUfJFOgh6iOFYAw89V1pJBBhTJ2brx2l6LGSMBoEGitO+hmo5WKeDgC0o5HbEchmvbgVDJWDxEdKiwTt9fv4D9a55sVNO9f6U1uPuJyYWTUFXU8+1iM38/d0X3OseeEk9msyn4WhTkJkZjIJhOUOGSaH6UCkRR/snexfduH8UN8cWuFYLdScKOfqDzYSYb7Npyzlj583iG8o2P9dVy9Jd8SN12Cd7HB7GliBEiGL3rDL9fxrNq5TLYb9UctHNbGypzj9n8xXFM+kEJ6nCIrFh6wInLDaRxc8edrA6jX12pAHENZMN6ZDln0g4mp1J8fDd88s7kRX3tvY4F9+lAIzjk5RGh1N1LE5NDJrvM0BT3rXIFIaOTuX5RnXphLllrnRr60OjEpi8TNC8Rlt5ckGMQ6sFyxnGSBGQDxudhmv2S+J0aYZ656/cfjnuXvCeYczrRCq1XorY4WwYaVRCiStpRU7PbZJOI79ZIGo3a4O6pa1s++KGxHFKIK9jKNWFOr77Opie//SC3ESZ9YaGG/RGHNXiQXZHQ71spHJ2Dxln7/p6La9/tRmlnQH6MblMSNb+Rhbyv/8dQ4tIocMDUqwQyOzGe+BHcOTfiuQ1H+bpNj7j9MKlH6hiKi5q699qaKWs3SE1xVnBg61Ya+CpxvPyGy/MFuMx2rCKmEupwSkiowWn+64sZ7rzeH82MnSlewMUcPZHxvMOB6kGbswJ0MJwVN3BZWfmuUO2r3qhCSPew7XAdybt8U45O+kUnBzWWc6RrxRNFYmx6RM3N0LoFWqAH0lxMWm2HlfLaz5Qln9Nc494LGLgyoHDHd8rgPCHYiULVpi9ZZhwoarcTbqcepsd0cMc9nsmi0kvOjSRHDLFv4t40Ss70JG1UXZv6AVtS2yPhCKwgdx8xXrP0uTqQUQavtZ9Z8cCnmWCpa91KmrFb2TSbl9GMbni0+y4BAQusAnknEpmeqLNZFknrr/saYz4jMmA9IyKr9Rg/4ZA6KWfmk469LMzfd9R/A63q/NS+pV0aqh5yMxK+1c6BACfYYi8sPFmwZfM75DZ99nr2XmiOV3/3VRSxLErs0uHPuyXzx/VTu7rq5PAeK9hsDQ1IQPjMmWGyddkNgl5l8Q1Gx2AbWzLKFKlKKPtC4aXyDTAMUOsCG//S1qBJIsf0N7HOrTIPhVyJJbU2vLeL9PERBRdLc3airbQPaZBbVtx7QPQKVDZFjJtUi3jF6XOpDnsyFZJhnCbKXmv93Jw8t0iJq3xdkuZ9IaCRzQLH1eQM8QAB/gVKuJJjdzx9jSBBrzzzIZ5QscTTFJF0rT12HybE+5r7lwkiZG9FIzkGKgVpdV+Db3lGItjVKjqrDZVZEzJEtpA3ObJhDbsOGnIxI1RFu623+PzEnrvnOa2V382PebKuBS449N2OqGfwEi2PHTioTNmvn5NVYzromiL13vgWM2poLKnPC9KE9053NfhUo9BCASVpn7CMZNTATVn74iho/Xi3db3tBv5Wnh9B8314cBdSo/h7u63HCZzHvTmw0uGYCR5zcjlHzVSieI+eFTqDnv1Ho7VHIprRQaJDu4woW4hodQ2cVEiZLMz4u3bPHz7wxwUCZaOEyykPZ5vxaeNil8HQ5TYM/aOb8RH1brrQOnkCKombAAEx6Dt70aB7/FZKqu1uwawnDNk0UM2WXAdWXynZleXuzYsuvclOVSncE05Pv7ymabjT+abMxH5n8/atOBSfcLKLUol00lIXY5GRDP0tFuKMZ+0A5jmC0d3+2TAecDxdCKdmIrJRoFTsWTosCVW6x8SUdIkDsZ7h9C8w+Ep/2+tUU0PahjGEdPFVvVianjEbbZhznVQ1hcrTRM6tEjcf3JDxC5niwYPVEEOhFDR3eBj5jT1nPVZIvkcpslyRCSSY36obK10FozjEihu67gF6jPmAgNOTZAlAxhwiGfTaIt1pR0xbuOWlTvIMUhNeTOBmfRhqVMUy5+MeV4yrF+uVtPqmoROUNVhO+HjV8UvpO9eSKOQKQ7b8A==
3:39