File | Title | Manuscript Id |
Chapter 27 Introduction | morris2e_ch27_1.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_1_dlap.xml | 5623cf0f757a2ef065000000 |
27.1 The Eukaryotic Cell: A Review
| morris2e_ch27_2.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_2_dlap.xml | 5623cf0f757a2ef065000000 |
Internal protein scaffolding and dynamic membranes organize the eukaryotic cell.
| morris2e_ch27_3.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_3_dlap.xml | 5623cf0f757a2ef065000000 |
In eukaryotic cells, energy metabolism is localized in mitochondria and chloroplasts.
| morris2e_ch27_4.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_4_dlap.xml | 5623cf0f757a2ef065000000 |
The organization of the eukaryotic genome also helps explain eukaryotic diversity.
| morris2e_ch27_5.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_5_dlap.xml | 5623cf0f757a2ef065000000 |
Sex promotes genetic diversity in eukaryotes and gives rise to distinctive life cycles.
| morris2e_ch27_6.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_6_dlap.xml | 5623cf0f757a2ef065000000 |
27.2 Eukaryotic Origins
| morris2e_ch27_7.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_7_dlap.xml | 5623cf0f757a2ef065000000 |
Case 5: What role did symbiosis play in the origin of chloroplasts?
| morris2e_ch27_8.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_8_dlap.xml | 5623cf0f757a2ef065000000 |
Case 5: What role did symbiosis play in the origin of mitochondria?
| morris2e_ch27_9.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_9_dlap.xml | 5623cf0f757a2ef065000000 |
Case 5: How did the eukaryotic cell originate?
| morris2e_ch27_10.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_10_dlap.xml | 5623cf0f757a2ef065000000 |
In the oceans, many single-celled eukaryotes harbor symbiotic bacteria.
| morris2e_ch27_11.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_11_dlap.xml | 5623cf0f757a2ef065000000 |
27.3 Eukaryotic Diversity
| morris2e_ch27_12.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_12_dlap.xml | 5623cf0f757a2ef065000000 |
Our own group, the opisthokonts, is the most diverse eukaryotic superkingdom.
| morris2e_ch27_13.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_13_dlap.xml | 5623cf0f757a2ef065000000 |
Amoebozoans include slime molds that produce multicellular structures.
| morris2e_ch27_14.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_14_dlap.xml | 5623cf0f757a2ef065000000 |
Archaeplastids, which include land plants, are photosynthetic organisms.
| morris2e_ch27_15.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_15_dlap.xml | 5623cf0f757a2ef065000000 |
Stramenopiles, alveolates, and rhizarians dominate eukaryotic diversity in the oceans.
| morris2e_ch27_16.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_16_dlap.xml | 5623cf0f757a2ef065000000 |
Photosynthesis spread through eukaryotes by repeated endosymbioses involving eukaryotic algae.
| morris2e_ch27_17.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_17_dlap.xml | 5623cf0f757a2ef065000000 |
27.4 The Fossil Record of Protists
| morris2e_ch27_18.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_18_dlap.xml | 5623cf0f757a2ef065000000 |
Fossils show that eukaryotes existed at least 1800 million years ago.
| morris2e_ch27_19.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_19_dlap.xml | 5623cf0f757a2ef065000000 |
Protists have continued to diversify during the age of animals.
| morris2e_ch27_20.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_20_dlap.xml | 5623cf0f757a2ef065000000 |
Chapter 27 Summary | morris2e_ch27_21.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_21_dlap.xml | 5623cf0f757a2ef065000000 |