A rigid body rotates with a constant angular speed of \(\omega \) radians per second about a line through the origin in the direction of the vector \(2 \mathbf{i}+\mathbf{j}+2\mathbf{k}\). Find the speed of an object on this body at the instant the object passes through the point \((1,3,5)\). Assume the distance is in meters.
The position of the object is \(\mathbf{r}=\mathbf{i}+3\mathbf{j}+5\mathbf{k}\). So, the velocity \(\mathbf{v}\) of the object is \[ \begin{eqnarray*} \mathbf{v}&=& {\omega }\times \mathbf{r}=\left[ \omega \left( \frac{2}{ 3}\,\mathbf{i}+\frac{1}{3}\,\mathbf{j}+\frac{2}{3}\,\mathbf{k}\right) \right] \times \left[ \mathbf{i}+3\mathbf{j}+5\mathbf{k}\right] =\,\omega \left\vert \begin{array}{l@{\quad}l@{\quad}l} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \dfrac{2}{3} & \dfrac{1}{3} & \dfrac{2}{3} \\ 1 & 3 & 5 \end{array} \right\vert\\[5pt] &=&\omega \left( -\dfrac{1}{3}\mathbf{i}-\dfrac{8}{3}\mathbf{j}+ \dfrac{5}{3}\mathbf{k}\right) \end{eqnarray*} \]
The speed \(v\) of the object is \(v=\left\Vert \mathbf{v}\right\Vert =\omega \sqrt{\dfrac{1}{9}+\dfrac{64}{9}+\dfrac{25}{9}}= \sqrt{10}\,\omega\) meters per second.