Normalize each vector. That is, find a unit vector u that has the same direction as:
Solution (a) Since v=⟨3,−4⟩, then ‖. The unit vector \mathbf{u} in the same direction as \mathbf{v} is \begin{eqnarray*} \mathbf{u} = \dfrac{\mathbf{v}}{\Vert \mathbf{v\Vert }} = \dfrac{\mathbf{v}}{5} = \left\langle \dfrac{3}{5}, -\dfrac{4}{5}\right\rangle \end{eqnarray*}
(b) Since \mathbf{v} = \langle -1,2,-2\rangle, then \Vert \mathbf{v}\Vert = \sqrt{1 + 4 + 4} = 3. The unit vector \mathbf{u} in the same direction as \mathbf{v} is \begin{eqnarray*} \mathbf{u} = \dfrac{\mathbf{v}}{\Vert \mathbf{v\Vert }} = \dfrac{\mathbf{v}}{3} = \left\langle -\dfrac{1}{3}, \dfrac{2}{3}, -\dfrac{2}{3}\right\rangle \end{eqnarray*}