EXAMPLE 7Working with Standard Basis Vectors
- (a) If v=2i−3j and w=−i+2j, find 4v−w.
- (b) If v=2i+3j−k and w=−i−2j+4k, find 2v−3w.
Solution
(a) 4v−w=4(2i−3j)−(−i+2j)=(8i−12j)+(i−2j)=9i−14j
(b) 2v−3w=2(2i+3j−k)−3(−i−2j+4k)=(4i+6j−2k)+(3i+6j−12k)=7i+12j−14k