(a) If v=2i−3j and w=i+j, then v⋅w=(2)(1)+(−3)(1)=2−3=−1w⋅v=(1)(2)+(1)(−3)=2−3=−1v⋅v=22+(−3)2=4+9=13w⋅w=12+12=2
(b) If v=2i−j+k and w=4i+2j−k, then v⋅w=(2)(4)+(−1)(2)+(1)(−1)w⋅v=(4)(2)+(2)(−1)+(−1)(1)=8−2−1=5=8−2−1=5v⋅v=4+1+1=6w⋅w=16+4+1=21