Processing math: 20%

EXAMPLE 2Finding the Dot Product of Two Vectors

Find the angle between the vectors v=2ij+k and w=i+j.

Solution We find vw, and \Vert \mathbf{w}\Vert. \begin{eqnarray*} \mathbf{v}\,{\cdot}\, \mathbf{w} &=&(2) (-1) +(-1) (1) +(1) (0) =-2-1+0=-3 \\[4pt] \Vert \mathbf{v}\Vert &=&\sqrt{2^{2}+(-1) ^{2}+1^{2}}=\sqrt{6} \\[4pt] \Vert \mathbf{w}\Vert &=&\sqrt{(-1) ^{2}+1^{2}}=\sqrt{2} \end{eqnarray*}

Then if \theta is the angle between \mathbf{v} and \mathbf{w}, \begin{equation*} \cos \theta =\dfrac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{v}\Vert \Vert \mathbf{w}\Vert }=\dfrac{-3}{( \sqrt{6}) (\sqrt{2}) }= \dfrac{-3}{\sqrt{12}}=-\dfrac{\sqrt{3}}{2} \end{equation*}

Since 0\leq \theta \leq \pi, the angle \theta between \mathbf{v} and \mathbf{w} is \dfrac{5\pi}{6} radians. See Figure 36.