Find the work done by a force of 2 newtons (N) acting in the direction \( \mathbf{i}+\mathbf{j}+\mathbf{k}\) in moving an object 1 m from (0, 0, 0) to (1, 0, 0).
Since the force vector \(\mathbf{F}\) has magnitude \(2,\) we have \[ \mathbf{F}=2\left( \frac{1}{\sqrt{3}}\mathbf{i}+\dfrac{1}{\sqrt{3}}\mathbf{j} +\dfrac{1}{\sqrt{3}}\mathbf{k}\right) =\dfrac{2}{\sqrt{3}}( \mathbf{i}+ \mathbf{j}+\mathbf{k}) \]
The line of motion of the object from \(( 0,0,0) \) to \(\left( 1,0,0\right)\) is \(\skew5\overrightarrow{\it AB}=\mathbf{i}\). The work \(W\) is therefore \[ W=\mathbf{F}\,{\cdot}\, \skew5\overrightarrow{\it AB}=\frac{2}{\sqrt{3}}(\mathbf{i}+\mathbf{j }+\mathbf{k})\,{\cdot}\ \mathbf{i}=\frac{2}{\sqrt{3}}\hbox{ joules} \]