Find the work done by a force of 2 newtons (N) acting in the direction i+j+k in moving an object 1 m from (0, 0, 0) to (1, 0, 0).
Solution We need to express the force F in terms of its magnitude and direction. The unit vector u in the direction v=i+j+k is u=v‖
Since the force vector \mathbf{F} has magnitude 2, we have \mathbf{F}=2\left( \frac{1}{\sqrt{3}}\mathbf{i}+\dfrac{1}{\sqrt{3}}\mathbf{j} +\dfrac{1}{\sqrt{3}}\mathbf{k}\right) =\dfrac{2}{\sqrt{3}}( \mathbf{i}+ \mathbf{j}+\mathbf{k})
The line of motion of the object from ( 0,0,0) to \left( 1,0,0\right) is \skew5\overrightarrow{\it AB}=\mathbf{i}. The work W is therefore W=\mathbf{F}\,{\cdot}\, \skew5\overrightarrow{\it AB}=\frac{2}{\sqrt{3}}(\mathbf{i}+\mathbf{j }+\mathbf{k})\,{\cdot}\ \mathbf{i}=\frac{2}{\sqrt{3}}\hbox{ joules}