Find the derivative of u(t)×v(t) if u(t)=costi+sintj+tkandv(t)=ti+lntj+k
Solution The derivatives of u and v are u′(t)=−sinti+cos˙tj+kandv′(t)=i+1tj
We use the cross product formula. [u(t)×v(t)]′=u′(t)×v(t)+u(t)×v′(t)=|ijk−sintcost1tlnt1|+|ijkcostsintt11t0|=[(cost−lnt)i+(sint+t)j−[(sint)(lnt)+tcost]k]+[−i+tj+(1tcost−sint)k]=(cost−lnt−1)i+(sint+2t)j+[1tcost−sint−(sint)(lnt)−tcost]k