Determine whether the parameter used in each vector function is arc length.
(a) C1: r(t)=2sint2i+2cost2j0≤t≤2π
(b) C2: r(t)=costi+sintj+tkt≥0
Solution (a) We begin by finding r′(t) and ‖ \begin{equation*} \begin{array}{rrr} \mathbf{r}^{\prime} (t)=\cos \dfrac{t}{2}\mathbf{i}-\sin \dfrac{t}{2}\mathbf{j} \qquad \left\Vert \mathbf{r}^{\prime} (t)\right\Vert\;=\;\sqrt{ \cos ^{2}\dfrac{t}{2}+\sin ^{2}\dfrac{t}{2}}=1\quad \hbox{for all}~t \end{array} \end{equation*}
776
Since \left\Vert \mathbf{r}^{\prime} (t)\right\Vert\;=\;1 for all t, the parameter t is arc length as measured along C_{1}.
(b) We begin by finding \mathbf{r}^{\prime} ( t) and \left\Vert \mathbf{r^{\prime} }( t) \right\Vert . \begin{equation*} \begin{array}{rrr} \mathbf{r}^{\prime} (t)=-\sin t\mathbf{i}+\cos t\mathbf{j+k}\qquad \left\Vert \mathbf{r}^{\prime} (t)\right\Vert\;=\;\sqrt{\sin ^{2}t+\cos ^{2}t+1}=\sqrt{2} \end{array} \end{equation*}
Since \left\Vert \mathbf{r}^{\prime }(t)\right\Vert\;\neq 1 for all t, the parameter t does not measure arc length along C_{2}.