Determine whether the parameter used in each vector function is arc length.
(a) \(C_{1}\): \(\ \mathbf{r}(t)=2\sin \dfrac{t}{2}\mathbf{i}+2\cos \dfrac{t}{2}\mathbf{j}\quad 0\leq t\leq 2\pi \)
(b) \(C_{2}\): \(\ \mathbf{r}(t)=\cos t\mathbf{i}+\sin t\mathbf{j}+t\mathbf{k}\quad t\geq 0\)
776
Since \(\left\Vert \mathbf{r}^{\prime} (t)\right\Vert\;=\;1\) for all \(t,\) the parameter \(t\) is arc length as measured along \(C_{1}\).
(b) We begin by finding \(\mathbf{r}^{\prime} ( t)\) and \(\left\Vert \mathbf{r^{\prime} }( t) \right\Vert .\) \begin{equation*} \begin{array}{rrr} \mathbf{r}^{\prime} (t)=-\sin t\mathbf{i}+\cos t\mathbf{j+k}\qquad \left\Vert \mathbf{r}^{\prime} (t)\right\Vert\;=\;\sqrt{\sin ^{2}t+\cos ^{2}t+1}=\sqrt{2} \end{array} \end{equation*}
Since \(\left\Vert \mathbf{r}^{\prime }(t)\right\Vert\;\neq 1\) for all \(t\), the parameter \(t\) does not measure arc length along \(C_{2}\).