Find the curvature of a circle of radius R.
Solution For a circle of radius R, r=r(t)=Rcosti+Rsintj0≤t≤2π
Then we find r′(t) and ‖ \begin{equation*} \begin{array}{rrr} \mathbf{r}^{\prime} ( t)\;=\;-R\;\sin t\mathbf{i}+R\;\cos t\mathbf{j}\qquad \Vert \mathbf{r}^{\prime} (t) \Vert\;=\;\sqrt{R^{2}\sin ^{2}t+R^{2}\cos ^{2}t}=R \end{array} \end{equation*}