Find the radius of the osculating circle of the ellipse traced out by the vector function \begin{equation*} \mathbf{r}(t)=3\sin t\mathbf{i}+4\cos t\mathbf{j} \qquad 0\leq t\leq 2\pi \end{equation*}
(a) At \(t=0\)
(b) At \(t=\dfrac{\pi }{2}\)
\begin{eqnarray*} \mathbf{r^{\prime} }(t)\times \mathbf{r^{\prime \prime} }(t)= \left|\begin{array}{c@{\quad}c@{\quad}c} \mathbf{i} & \mathbf{j} & \mathbf{k} \\[3pt] 3\cos t & -4\sin t & 0 \\[3pt] -3\sin t & -4\cos t & 0 \end{array}\right| &=&( -12\cos ^{2}t-12\sin ^{2}t) \mathbf{k}=-12\mathbf{k}\\[9pt] \left\Vert \mathbf{r}^{\prime} (t) \times \mathbf{r} ^{\prime \prime} (t) \right\Vert &=&12 \end{eqnarray*}
Using formula (4), the curvature \(\kappa\) of \(C\) is \begin{equation*} \kappa\;=\;\dfrac{\left\Vert \mathbf{r^{\prime} }(t) \times \mathbf{ r^{\prime \prime} }(t) \right\Vert }{\left\Vert \mathbf{r^{\prime} } (t) \right\Vert ^{3}}=\dfrac{12}{( 9\cos ^{2}t+16\sin ^{2}t) ^{3/2}} \end{equation*}
The radius \(\rho\) of the osculating circle is \begin{equation*} \rho\;=\;\frac{1}{\kappa }=\frac{(9\cos ^{2}t+16\sin ^{2}t)^{3/2}}{12} \end{equation*}
(a) At \(t=0\), the curvature of \(C\) is \(\kappa\;=\;\dfrac{4}{9}\), so the radius of the osculating circle is \(\rho\;=\;\dfrac{9}{4}\).
(b) At \(t=\dfrac{\pi }{2},\) the curvature of \(C\) is \(\kappa\;=\;\dfrac{3}{16}\), so the radius of the osculating circle is \(\rho\;=\;\dfrac{16}{3}\).