If w=x2y+y2z, where x=t, y=t2, and z=t3, then w is a function of t, and dwdt=∂w∂xdxdt+∂w∂ydydt+∂w∂zdzdt=(2xy)⏟∂w∂x(1)⏟dxdt+(x2+2yz)⏟∂w∂y(2t)⏟dydt+(y2)⏟∂w∂z(3t2)⏟dzdt=2t3+(t2+2t5)(2t)+(t4)(3t2)=7t6+4t3