Let f(x,y)=√x+x√y. Find:
Solution (a) f(1,4)=√1+1√4=1+2=3 x=1;y=4.
(b)f(a2,9b2)=√a2+a2√9b2=a+3a2bx=a2;y=9b2;a>0;b>0.
(c) f(x+Δx,y)=√x+Δx+(x+Δx)√y
(d) f(x,y+Δy)=√x+x√y+Δy