Describing Level Surfaces
Figure 16 Level surfaces \(x^{2} + y^{2} + z^{2} =c\).
Describe the level surfaces of the function \(w=f(x,y,z)=x^{2}+y^{2}+z^{2}\).
Solution Since \(w\geq 0\), the level surfaces are the graphs of \[ \begin{equation*} x^{2}+y^{2}+z^{2}=c\qquad c\geq 0 \end{equation*} \]
These are concentric spheres if \(c>0\) and the origin if \(c=0.\) See Figure 16.