Use the ε-δ definition of a limit to show that lim
Solution Given a number \varepsilon >0, we seek a number \delta >0, so that \begin{equation*} \hbox{whenever}\quad 0<\sqrt{(x-0) ^{2}+( y-0) ^{2}} <\delta \qquad \hbox{then}\quad \left\vert \dfrac{2xy^{2}}{x^{2}+y^{2}} -0\right\vert <\varepsilon \end{equation*}
That is, \begin{equation*} \hbox{whenever }\quad 0<\sqrt{x^{2}+y^{2}}<\delta \quad \hbox{then }\quad \left\vert \dfrac{2xy^{2}}{x^{2}+y^{2}}\right\vert <\varepsilon \end{equation*}
We need to find a connection between \dfrac{2xy^{2}}{x^{2}+y^{2}} and \sqrt{x^{2}+y^{2}}. We begin with the observation that since x^{2}\geq 0, \begin{equation*} y^{2}\leq x^{2}+y^{2}\hbox{ } \end{equation*}
So, for all points (x,y) not equal to (0,0), we have \dfrac{y^{2}}{x^{2}+y^{2}}\leq 1\qquad {\color{#0066A7}{\hbox{Divide both sides by \(x^2+y^2\).}}}
Now \begin{equation*} \left\vert \frac{2xy^{2}}{x^{2}+y^{2}}\right\vert =\frac{2\vert x\vert y^{2}}{x^{2}+y^{2}}=2\vert x\vert \cdot \dfrac{ y^{2}}{x^{2}+y^{2}}\leq 2\left\vert x\right\vert \cdot 1=2\sqrt{x^{2}}\leq 2 \sqrt{x^{2}+y^{2}} \end{equation*}
Given \varepsilon >0, we choose \delta \leq \dfrac{\varepsilon }{2}. Then whenever 0<\sqrt{x^{2}+y^{2}}<\delta , we have \begin{equation*} \left\vert \frac{2xy^{2}}{x^{2}+y^{2}}\right\vert \leq 2\sqrt{x^{2}+y^{2}} <2\delta \leq \varepsilon \end{equation*}
That is, \lim_{(x, y)\rightarrow (0, 0)}\left\vert \frac{2xy^{2}}{x^{2}+y^{2}} \right\vert =0 %%\tag{$\blacksquare \(}