Find the differential dw of the function w=f(x,y,z)=3x2sin2ycosz.
Solution The function f is defined everywhere in space. We begin by finding the partial derivatives of f. fx(x,y,z)=6xsin2ycoszfy(x,y,z)=6x2sinycosycoszfz(x,y,z)=−3x2sin2ysinz
847
Since the partial derivatives are continuous everywhere, we have dw=fx(x,y,z) dx+fy(x,y,z) dy+fz(x,y,z) dz=6xsin2ycoszdx+6x2sinycosycoszdy−3x2sin2ysinzdz