The gradient of \(f\) at \((2,1)\) is \[ {\bf\nabla}\! f(2,1)=12\mathbf{i}+8\mathbf{j} \]
(b) The unit vector \(\mathbf{u}\) from \((2,1)\) to \((3,5)\) is \[ \begin{equation*} \mathbf{u=}\dfrac{( 3-2) \mathbf{i} +( 5-1) \mathbf{j} }{\sqrt{( 3-2) ^{2}+( 5-1) ^{2}}}=\frac{\mathbf{i}+4 \mathbf{j}}{\sqrt{17}} \end{equation*} \]
We use formula (3) for the directional derivative to find \(D_{\mathbf{u} }(2,1).\) \[ \begin{equation*} D_{\mathbf{u}}(2,1)={\bf\nabla\! }f(2,1)\,{\bf\cdot}\, \mathbf{u}=(12\mathbf{i}+8 \mathbf{j})\,{\bf\cdot}\, \frac{\mathbf{i}+4\mathbf{j}}{\sqrt{17}}=\frac{44}{\sqrt{17} } \end{equation*} \]
The directional derivative of \(f\) at \((2,1)\) in the direction of \(\mathbf{u}\) is \(\dfrac{44}{\sqrt{17}}\)