A metal plate is placed on the \(xy\)-plane in such a way that the temperature \(T\) in degrees Celsius at any point \(P=(x,y)\) is inversely proportional to the distance of \(P\) from \((0,0)\). Suppose the temperature of the plate at the point \((-3,4)\) equals \({50^{\circ}{\rm C}}\).
869
where \(k\) is the constant of proportionality. Since \(T=50^{\circ}{\rm C}\) when \((x,y)=(-3,4)\), then \[ k=T\sqrt{x^{2}+y^{2}}=50\sqrt{( -3) ^{2}+4^{2}}=50(5)=250 \]
So, \(T=T( x,y) =\dfrac{250}{\sqrt{x^{2}+y^{2}}}\).
(b) The gradient of \(T=T( x,y) =\dfrac{250}{\sqrt{ x^{2}+y^{2}}}\) is \[ {\bf\nabla }T(x,y)=T_{x}(x,y)\mathbf{i}+T_{y}(x,y)\mathbf{j}=-\frac{250x }{(x^{2}+y^{2})^{3/2}}\mathbf{i}-\frac{250y}{(x^{2}+y^{2})^{3/2}}\mathbf{ j} \]
At \(( -3,4)\), \[ {\bf\nabla }T(-3,4)=-\frac{250 ( -3) }{ [ ( -3) ^{2}+4^{2}] ^{3/2}}\mathbf{i}-\frac{250 ( 4) }{ [ ( -3) ^{2}+4^{2}] ^{3/2}}\mathbf{j}=\frac{750}{125} \mathbf{i}-\frac{1000}{125}\mathbf{j}=6\mathbf{i}-8\mathbf{j} \]
(c) The temperature increases most rapidly in the direction \({\bf\nabla} T(-3,4)=6\mathbf{i}-8\mathbf{j}\).
(d) The temperature decreases most rapidly in the direction \(-{\bf\nabla }T(-3,4)=-6\mathbf{i}+8\mathbf{j}\).
(e) The rate of change in \(T\) at \((-3,4)\) equals \(0\) for directions orthogonal to \({\bf\nabla} T(-3,4)=6\mathbf{i}-8\mathbf{j}\). That is, the rate of change in \(T\) is \(0\) in either of the two directions orthogonal to \(6\mathbf{i}-8\mathbf{j}\), namely \(\pm ( 8\mathbf{i}+6 \mathbf{j})\).