Find the volume of the solid that is removed from a hemisphere of radius 1 when it is cut by a cone that makes an angle of \(30^{\circ}\) with the positive \(z\)-axis.
Then the volume \(V\) of the solid is \[ \begin{eqnarray*} V &=&\iiint\limits_{E}\,\rho ^{2}\sin \phi \,d\rho \,d\theta \,d\phi =\int_{0}^{\pi /6}\int_{0}^{2\pi}\int_{0}^{1}\rho ^{2}\sin \phi \,d\rho \,d\theta \,d\phi\\ &=&\int_{0}^{\pi /6}\int_{0}^{2\pi}\left[\int_{0}^{1}\rho ^{2}d\rho \right] \sin\, \phi\, d\theta \,d\phi \notag \\ &=&\int_{0}^{\pi /6}\int_{0}^{2\pi }\left[ \dfrac{\rho ^{3}}{3}\right] _{0}^{1}\,d\theta \sin \phi \,d\phi =\int_{0}^{\pi /6}\left[\int_{0}^{2\pi } \dfrac{1}{3}d\theta \right] \sin \phi \,d\phi \notag \\ &=&\dfrac{2\pi}{3}\int_{0}^{\pi /6}\sin \phi \,d\phi =\left. \dfrac{2\pi }{3 }(-\cos \phi) \right] _{0}^{\pi /6}=\dfrac{2\pi }{3}\left( 1- \dfrac{\sqrt{3}}{2}\right) \end{eqnarray*} \]