Show that in changing from rectangular coordinates \((x,y)\) to polar coordinates \((r,\theta )\), the Jacobian of \(x\) and \(y\) with respect to \(r\) and \(\theta \) is \(r\).
The partial derivatives are \[ \dfrac{\partial x}{\partial r}=\cos \theta \qquad \dfrac{\partial x}{ \partial \theta }=-r\sin \theta \qquad \dfrac{\partial y}{\partial r}=\sin \theta \qquad \dfrac{\partial y}{\partial \theta }=r\cos \theta \]
The Jacobian of \(x,y\) with respect to \(r,\theta \) is \begin{eqnarray*} \dfrac{\partial (x,y)}{\partial (r,\theta )}&=&\left\vert \begin{array}{c@{\quad}c} \dfrac{\partial x}{\partial r} & \dfrac{\partial x}{\partial \theta } \\[9pt] \dfrac{\partial y}{\partial r} & \dfrac{\partial y}{\partial \theta } \end{array} \right\vert =\left\vert \begin{array}{l@{\quad}r} \cos \theta & -r\sin \theta \\[3pt] \sin \theta & r\cos \theta \end{array} \right\vert =\cos \theta \cdot r\cos \theta -\sin \theta (-r\sin \theta)\\[4pt] &=&r\cos ^{2}\theta +r\sin ^{2}\theta =r \end{eqnarray*}