Using Properties of Double Integrals
If \(R\) is a closed, bounded region, then
- \(\displaystyle\iint\limits_{\kern-3ptR} ( x^{2}y+\sin x\cos y) \,dA=\displaystyle\iint\limits_{\kern-3ptR} x^{2}y\,dA+\displaystyle\iint\limits_{\kern-3ptR}\sin x\cos y\,dA\)
- \(\displaystyle\iint\limits_{\kern-3ptR} 8( x^{2}+y^{2})\, dA=8\displaystyle\iint\limits_{\kern-3ptR} ( x^{2}+y^{2})\, dA\)