Use Green’s Theorem to find the area of the region enclosed by the ellipse x2a2+y2b2=1a>0b>0
Solution We express the ellipse using the parametric equations x=acost, y=bsint, 0≤t≤2π. Then dx=−asintdt and dy=bcostdt. Now we use (1) to find the area. A=12∮C(−ydx+xdy)=12∫2π0[−bsint(−asintdt)+acost(bcostdt)]=12∫2π0ab(sin2t+cos2t)dt=12(ab)∫2π0dt=12ab(2π)=πab