Processing math: 100%

EXAMPLE 5Parametrizing a Cone Using Different Coordinate Systems

Find a parametrization of the surface S defined by the cone z=3x2+3y2x2+y216

  1. (a) Using rectangular coordinates.
  2. (b) Using cylindrical coordinates.
  3. (c) Using spherical coordinates.

Solution (a) The equation is given in rectangular coordinates and is written explicitly as a function z=f(x,y). So, we define x=u, y=v, z=3u2+3v2. Then a parametrization of the cone is r(u,v)=ui+vj+3u2+3v2ku2+v216

Cylindrical coordinates are discussed in Section 14.7, pp. 950-954.

(b) In cylindrical coordinates, the cone is given by z=3x2+3y2=3(rcosθ)2+(rsinθ)2=3r2=3r

where z is expressed explicitly in terms of r and θ. So if we use r and θ as parameters, then a parametrization of the cone is r(r,θ)=rcosθi+rsinθjx=rcosθ,y=rsinθ,z=3r+3rk0r40θ2π

(c) In spherical coordinates, the equation of a half cone, where z0, is ϕ=a, 0<a<π2. We use Figure 45 to find a. tanϕ=rz=r3r=13z=3rϕ=tan113=π6=a

Using ρ and θ as parameters, parametric equations for the cone in spherical coordinates are x=sinπ6=12ρ2cosθy=sinπ6=12ρ2sinθz=cosπ6=3232ρ

Now we find the parameter domain. Since z2=3x2+3y2 and ρ2=x2+y2+z2=x2+y2+(3x2+3y2z2)=4x2+4y2

we have 0ρ2=4(x2+y2)416=64, or equivalently, 0ρ8.

The parameter domain of the cone is 0ρ8 and 0θ2π. Then a parametrization of the cone is r(ρ,θ)=ρ2cosθi+ρ2sinθj+32ρk0ρ80θ2π