Find the surface area of the torus parametrized by r(u,v)=(3+cosv)cosui+(3+cosv)sinuj+sinvk
where 0≤u≤2π and 0≤v≤2π.
Solution This is the torus graphed in Figure 42. To use formula (1) to find the area of a parametrized surface, we need to find the partial derivatives of r=r(u,v). ru(u,v)=(3+cosv)(−sinu)i+(3+cosv)cosujrv(u,v)=(−sinv)cosui−sinvsinuj+cosvk
Next we find the cross product: ru×rv=|ijk−(3+cosv)sinu(3+cosv)cosu0−sinvcosu−sinvsinucosv|=(3+cosv)(cosucosvi+sinucosvj+sinvk)
Then ‖
Now using formula (1), the surface area of S is \begin{eqnarray*} \iint\limits_{\kern-3ptR}( 3+\cos v)\, du\,dv&=&\int_{0}^{2\pi }\int_{0}^{2\pi }( 3+\cos v)\, dv\,du=\int_{0}^{2\pi }\big[ 3v+\sin v \big] _{0}^{2\pi }du\\[4pt] &=&\int_{0}^{2\pi }6\pi du=12\pi ^{2} \end{eqnarray*}