Find the surface area of the torus parametrized by \[ \begin{equation*} \mathbf{r}(u,v) =( 3+\cos v) \cos u\,\mathbf{i} +( 3+\cos v) \sin u\,\mathbf{j}+\sin v\mathbf{k} \end{equation*} \]
where \(0\leq u\leq 2\pi \) and \(0\leq v\leq 2\pi .\)
Next we find the cross product: \[ \begin{eqnarray*} \mathbf{r}_{u}\times \mathbf{r}_{v} &=& \left|\begin{array}{c@{\quad}c@{\quad}c} \mathbf{i} & \mathbf{j} & \mathbf{k} \\[3pt] -( 3+\cos v) \sin u & ( 3+\cos v) \cos u & 0 \\[3pt] -\sin v\cos u & -\sin v\sin u & \cos v \end{array}\right|\\[5pt] &=&( 3+\cos v) \left( \cos u\cos v\mathbf{i}+\sin u\cos v\mathbf{j }+\sin v\mathbf{k}\right) \end{eqnarray*} \]
Then \[ \begin{eqnarray*} \hspace{-2pc}\left\Vert \mathbf{r}_{u}\times \mathbf{r}_{v}\right\Vert &=&\sqrt{( 3+\cos v) ^{2}( \cos ^{2}u\cos ^{2}v+\sin ^{2}u\cos ^{2}v+\sin ^{2}v) } \\ &=&( 3+\cos v) \sqrt{\cos ^{2}v( \cos ^{2}u+\sin ^{2}u) +\sin ^{2}v}=( 3+\cos v) \sqrt{\cos ^{2}v+\sin ^{2}v}\\ &=&3+\cos v \end{eqnarray*} \]
Now using formula (1), the surface area of \(S\) is \[ \begin{eqnarray*} \iint\limits_{\kern-3ptR}( 3+\cos v)\, du\,dv&=&\int_{0}^{2\pi }\int_{0}^{2\pi }( 3+\cos v)\, dv\,du=\int_{0}^{2\pi }\big[ 3v+\sin v \big] _{0}^{2\pi }du\\[4pt] &=&\int_{0}^{2\pi }6\pi du=12\pi ^{2} \end{eqnarray*} \]