Find the mass M of a thin piece of wire in the shape of a semicircle x=2cost, y=2sint, 0≤t≤π, if the variable density of the wire is ρ(x,y)=y+2.
Solution Using (2), we find that the mass M of the wire is M=∫Cρ(x,y)ds=∫C(y+2)ds=∫π0(y+2)√(dxdt)2+(dydt)2dt=∫π0(2sint+2)√(−2sint)2+(2cost)2dtdxdt=−2sint;dydt=2cost=∫π04(sint+1)dt=4[−cost+t]π0=4[π+2]