Processing math: 100%

EXAMPLE 4Finding the Lateral Surface Area of a Cylinder

Find the lateral surface area A of the cylinder that lies above the xy-plane, below the surface z=f(x,y)=x, and formed by lines parallel to the z -axis that intersect the curve y=x2, 0x2.

SolutionFigure 17 illustrates the cylinder. Along C, y=x2, the differential ds of arc length is ds=1+(dydx)2dx=dydx=2x1+4x2dx

The lateral surface area A of the cylinder is A=Cf(x,y)ds=Cxds=20x1+4x2dxLet u=1+4x2; then du=8xdx or xdx=18du.When x=0u=1; when x=2u=17.=17118udu=[14u3/23]171=1717112