Processing math: 0%

EXAMPLE 7Finding a Line Integral of the Form \int_{C}\mathbf{F}\,{\boldsymbol\cdot}\, d\mathbf{r}

Find \int_{C}\mathbf{F}\,{\boldsymbol\cdot}\, d\mathbf{r}

if \mathbf{F}(x,y)=x\mathbf{i}+xy\mathbf{j} and the curve C is traced out by the vector function \mathbf{r}(t)=t\,\mathbf{i}\,+\,t^{2} \mathbf{j}, 0\leq t\leq 2.

Solution Parametric equations of the curve C are x(t) =t\qquad y(t) =t^{2}\qquad 0\leq t\leq 2

So, \mathbf{F}=x\mathbf{i}+xy\,\mathbf{j}=t\mathbf{i}+(t) (t^{2}) \mathbf{j}=t\mathbf{i}+t^{3}\mathbf{j}

and d\mathbf{r}=\dfrac{d\mathbf{r}}{dt}\,dt=\dfrac{d}{dt}( t\,\mathbf{i} +t^{2}\mathbf{j})\, dt=(\mathbf{i}+2t\mathbf{j})\,dt

Then \mathbf{F}\,{\boldsymbol\cdot}\, d\mathbf{r}=( t\mathbf{i}+t^{3}\,\mathbf{j}) \,{\boldsymbol\cdot}\, ( \mathbf{i}+2t\,\mathbf{j}) \,dt=( t+2t^{4}) \,dt

so that \int_{C}\mathbf{F}\,{\boldsymbol\cdot}\, d\mathbf{r}=\int_{0}^{2}(t+2t^{4}) \,dt=\dfrac{74}{5}