1093
We substitute the initial conditions, \(y(0)=1\) and \(y^{\prime} (0)=1\), into (3). Then \[ \begin{equation*} y^{\prime \prime} ( 0) =0^{2}\cdot 1+e^{0}\cdot 1=1\qquad {\color{#0066A7}{\hbox{\(x=0; y(0) =1; y^{\prime} (0) =1; y^{\prime \prime}(x)= x^{2}y + e^{x}y^{\prime}\)}}} \end{equation*} \]
Now we differentiate \(y^{\prime \prime} =x^{2}y+e^{x}y^{\prime}\) with respect to \(x\) to find \(y^{\prime \prime \prime} ( 0) .\) \[ \begin{eqnarray*} y^{\prime \prime \prime} ( x) &=&( x^{2}y^{\prime} +2xy) +( e^{x}y^{\prime \prime} +e^{x}y^{\prime}) \\[3pt] y^{\prime \prime \prime} ( 0) &=& ( 0^{2}\cdot 1+2\cdot 0\cdot 1) +( e^{0}\cdot 1+e^{0}\cdot 1) =2 \end{eqnarray*} \]
We continue differentiating and evaluating the derivative at \(x=0.\) \[ \begin{eqnarray*} y^{(4)}( x) & =&x^{2}y^{\prime \prime} +4xy^{\prime} +2y+e^{x}y^{\prime \prime \prime} +2e^{x}y^{\prime \prime} +e^{x}y^{\prime} \\[3pt] y^{(4)}(0)& =&0^{2}\cdot 1+4\cdot 0\cdot 1+2\cdot 1+e^{0}\cdot 2+2\cdot e^{0}\cdot 1+e^{0}\cdot 1=7 \end{eqnarray*} \]
and so on. The Maclaurin series then becomes \[ \begin{equation*} y(x)=1+x+\frac{1}{2!}x^{2}+\frac{2}{3!}x^{3}+\frac{7}{4!}x^{4}+\cdots \end{equation*} \]
(b) We construct Table 1 that uses the first five terms of the series to approximate select values of \(y\) in the interval \(0\leq x\leq 1\).
\(x\) | \(0.0\) | \(0.1\) | \(0.2\) | \(0.3\) | \(0.4\) | \(0.5\) | \(0.6\) | \(0.7\) | \(0.8\) | \(0.9\) | \(1.0\) |
\(y\) | \(1.0\) | \(1.1054\) | \(1.2231\) | \(1.3564\) | \(1.5088\) | \(1.6849\) | \(1.8898\) | \(2.1294\) | \(2.4101\) | \(2.7394\) | \(3.125\) |
\(x\) | \(0.0\) | \(0.1\) | \(0.2\) | \(0.3\) | \(0.4\) | \(0.5\) | \(0.6\) | \(0.7\) | \(0.8\) | \(0.9\) | \(1.0\) |
\(y\) | \(1.0\) | \(1.1054\) | \(1.2232\) | \(\ 1.3569\) | \(1.5114\) | \(1.6933\) | \(1.9127\) | \(2.1836\) | \(2.5271\) | \(2.9747\) | \(3.5752\) |
From the results of Tables 1 and 2, we can see how the five-term approximation to the series solution of the differential equation deteriorates as we move away from the center of convergence \(0\).