Processing math: 100%

EXAMPLE 2Identifying a Homogeneous Function of Degree k

  1. (a) f(x,y)=3x2xy+y2 is a homogeneous function of degree 2, since f(tx,ty)=3(tx)2(tx)(ty)+(ty)2=t23x2t2xy+t2y2=t2(3x2xy+y2)=t2f(x,y)for all t>0
  2. (b) f(x,y)=x+4y is a homogeneous function of degree 12, since f(tx,ty)=tx+4(ty)=t(x+4y)=tx+4y=t1/2f(x,y)for all t>0
  3. (c) f(x,y)=xx2y2 is a homogeneous function of degree 0, since f(tx,ty)=tx(tx)2(ty)2=txt2(x2y2)=txtx2y2=t0f(x,y)for all t>0
  4. (d) f(x,y)=xy2 is not a homogeneous function, since f(tx,ty)=tx(ty)2=t(xty2)tk(xy2) for all t>0 and some k