Processing math: 100%
EXAMPLE 2
Identifying a Homogeneous Function of Degree
k
(a)
f
(
x
,
y
)
=
3
x
2
−
x
y
+
y
2
is a homogeneous function of degree 2, since
f
(
t
x
,
t
y
)
=
3
(
t
x
)
2
−
(
t
x
)
(
t
y
)
+
(
t
y
)
2
=
t
2
3
x
2
−
t
2
x
y
+
t
2
y
2
=
t
2
(
3
x
2
−
x
y
+
y
2
)
=
t
2
f
(
x
,
y
)
for all
t
>
0
(b)
f
(
x
,
y
)
=
√
x
+
4
y
is a homogeneous function of degree
1
2
, since
f
(
t
x
,
t
y
)
=
√
t
x
+
4
(
t
y
)
=
√
t
(
x
+
4
y
)
=
√
t
√
x
+
4
y
=
t
1
/
2
f
(
x
,
y
)
for all
t
>
0
(c)
f
(
x
,
y
)
=
x
√
x
2
−
y
2
is a homogeneous function of degree
0
, since
f
(
t
x
,
t
y
)
=
t
x
√
(
t
x
)
2
−
(
t
y
)
2
=
t
x
√
t
2
(
x
2
−
y
2
)
=
t
x
t
√
x
2
−
y
2
=
t
0
f
(
x
,
y
)
for all
t
>
0
(d)
f
(
x
,
y
)
=
x
−
y
2
is not a homogeneous function, since
f
(
t
x
,
t
y
)
=
t
x
−
(
t
y
)
2
=
t
(
x
−
t
y
2
)
≠
t
k
(
x
−
y
2
)
for all
t
>
0
and some
k
Next