Processing math: 100%

EXAMPLE 5Solving Exponential Equations

Solve each exponential equation:

  1. (a) 42x1=8x+3
  2. (b) ex2=(ex)21e3

Solution (a) We begin by expressing both sides of the equation with the same base so we can use the one-to-one property (1). 42x1=8x+3(22)2x1=(23)x+34=22,8=2322(2x1)=23(x+3)(ar)s=ars2(2x1) =3(x+3) If au=av,then u=v.4x2=3x+9Simplify.x=11Solve. The solution is 11.

(b) We use the Laws of Exponents to obtain the base e on the right side. (ex)21e3=e2xe3=e2x3 As a result, ex2=e2x3x2=2x3If au=av, then u=v.x2+2x3=0(x+3)(x1) =0x=3orx=1 The solution set is {3,1}.