Write sin(tan−1u) as an algebraic expression containing u.
Solution Let θ=tan−1u so that tanθ=u, where −π2<θ<π2. We note that in the interval (−π2,π2), secθ>0. Then sin(tan−1u)=sinθ=sinθ⋅cosθcosθ=tanθcosθ=tanθsecθ=tanθ√1+tan2θ=u√1+u2sec2θ=1+↑tan2θ;secθ>0
An alternate method of obtaining the solution to Example 2 uses right triangles. Let θ=tan−1u so that tanθ=u, −π2<θ<π2, and label the right triangles drawn in Figure 88. Using the Pythagorean Theorem, the hypotenuse of each triangle is √1+u2. Then sin(tan−1u)=sinθ=u√1+u2.