Solve the equation \(3\sin \theta -\cos ^{2}\theta =3\), where \(0\leq \theta <2\pi \).
This is a quadratic equation in \(\sin \theta\). Factor the left side and solve for \(\sin \theta .\) \[ \begin{array}{rcl@{\quad}c@{\quad}rcl} ( \sin \theta +4) (\sin \theta -1)~&=&0& \\ \sin \theta +4 &=&0&\hbox{ or }& \sin \theta -1&=&0 \\ \sin \theta &=&-4&\hbox{ or }& \sin \theta &=&1 \end{array} \]
The range of the sine function is \(-1\leq y\leq 1,\) so \(\sin \theta =-4\) has no solution. Solving \(\sin \theta =1,\) we obtain \[ \theta =\sin ^{-1}1=\dfrac{\pi }{2} \]
The only solution in the interval \(\left[ 0,2\pi \right) \) is \(\dfrac{\pi }{2 }.\)