For the function f defined by f(x)=2x2−3x, find:
Solution (a) f(5)=2(5)2−3(5)=50−15=35
(b) The function f(x)=2x2−3x gives us a rule to follow. To find f(x+h), expand (x+h)2, multiply the result by 2, and then subtract the product of 3 and (x+h). f(x+h)=2(x+h)2−3(x+h)=2(x2+2hx+h2)−3x−3h↑In f(x) replace x by x+h=2x2+4hx+2h2−3x−3h
(c) f(x+h)−f(x)=[2x2+4hx+2h2−3x−3h]−[2x2−3x]= 4hx+2h2−3h
(d) f(x+h)−f(x)h=4hx+2h2−3hh=h[4x+2h−3]h=↑h≠0; divide out h4x+2h−3