Factor each expression completely:
(a) \(2( x+3) ( x-2) ^{3}+( x+3) ^{2}( 3) ( x-2) ^{2}\)
(b) \(\dfrac{4}{3}x^{1/3}( 2x+1) +2x^{4/3}\)
(b) We begin by writing the term \(2x^{4/3}\) as a fraction with a denominator of \(3\). \[ \begin{array}{rcl@{\qquad\hspace*{-5.5pt}}l} \dfrac{4}{3}x^{1/3} ( 2x+1) +2x^{4/3} &=&\dfrac{4x^{1/3} (2x+1) }{3}+\dfrac{6x^{4/3}}{3}\\[9pt] &=&\dfrac{4x^{1/3} ( 2x+1) +6x^{4/3}}{3} &{\color{#0066A7}{\hbox{Add the two fractions.}}}\\[9pt] &=&\dfrac{2x^{1/3} [ 2 ( 2x+1) +3x] }{3} &{\color{#0066A7}{\hbox{2 and \(x^{1/3}\) are common factors.}}}\\[9pt] &=&\dfrac{2x^{1/3} (7x+2) }{3} & {\color{#0066A7}{\hbox{Simplify.}}} \end{array} \]