(a) Simplify \(\dfrac{( x^{2}+1) ( 3) -( 3x+4) ( 2x) }{( x^{2}+1) ^{2}}\).
(b) Write the expression \(( x^{2}+1) ^{1/2}+x\cdot \dfrac{1}{2}( x^{2}+1) ^{-1/2}\cdot 2x\) as a single quotient in which only positive exponents appear.
(b) \begin{eqnarray*} ( x^{2}+1) ^{1/2}+x\cdot \dfrac{1}{2}( x^{2}+1) ^{-1/2}\cdot 2x&=&( x^{2}+1) ^{1/2}+\dfrac{x^{2}}{ ( x^{2}+1) ^{1/2}}\\[6pt] &=&\dfrac{( x^{2}+1) ^{1/2}( x^{2}+1) ^{1/2}}{( x^{2}+1) ^{1/2}}+\dfrac{x^{2}}{( x^{2}+1) ^{1/2}}\\[6pt] &=&\dfrac{( x^{2}+1) +x^{2}}{( x^{2}+1) ^{1/2}}=\dfrac{ 2x^{2}+1}{( x^{2}+1) ^{1/2}} \end{eqnarray*}