Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 2Simplifying Algebraic Expressions

(a) Simplify (x2+1)(3)(3x+4)(2x)(x2+1)2.

(b) Write the expression (x2+1)1/2+x12(x2+1)1/22x as a single quotient in which only positive exponents appear.

Solution(a)  (x2+1)(3)(3x+4)(2x)(x2+1)2=3x2+3(6x2+8x)(x2+1)2=3x2+36x28x(x2+1)2=3x28x+3(x2+1)2=Factor(3x1)(x+3)(x2+1)2

(b) (x2+1)1/2+x12(x2+1)1/22x=(x2+1)1/2+x2(x2+1)1/2=(x2+1)1/2(x2+1)1/2(x2+1)1/2+x2(x2+1)1/2=(x2+1)+x2(x2+1)1/2=2x2+1(x2+1)1/2