(a) Simplify (x2+1)(3)−(3x+4)(2x)(x2+1)2.
(b) Write the expression (x2+1)1/2+x⋅12(x2+1)−1/2⋅2x as a single quotient in which only positive exponents appear.
Solution (a) (x2+1)(3)−(3x+4)(2x)(x2+1)2=3x2+3−(6x2+8x)(x2+1)2=3x2+3−6x2−8x(x2+1)2=−3x2−8x+3(x2+1)2=↑Factor−(3x−1)(x+3)(x2+1)2
(b) (x2+1)1/2+x⋅12(x2+1)−1/2⋅2x=(x2+1)1/2+x2(x2+1)1/2=(x2+1)1/2(x2+1)1/2(x2+1)1/2+x2(x2+1)1/2=(x2+1)+x2(x2+1)1/2=2x2+1(x2+1)1/2