Graph the equation \[ x^{2}+y^{2}+4x-6y+12=0 \]
Next, we complete the square of each expression in parentheses. Remember that any number added to the left side of an equation must be added to the right side. \begin{eqnarray*} {( x^{2}+4x\underset{\underset{\color{#0066A7}{\hbox{Add \(\left( \dfrac{4}{2}\right) ^{\!\!\!2}=\, 4\)}}}{\color{#0066A7}{\displaystyle\uparrow}}}{+}4) + ( y^{2}-6y\underset{\underset{\color{#0066A7}{\hbox{Add \(\left( \dfrac{-6}{2}\right) ^{\!\!\!2}=\, 9\)}}} {\color{#0066A7}{\displaystyle \uparrow}}}{+}9) }&=&-12+4+9=1\\ ( x+2)^{2}+( y-3) ^{2}&=&1 {16pt}\quad {\color{#0066A7}{\hbox{Factor.}}} \end{eqnarray*}
This is the standard form of the equation of a circle with radius \(1\) and center at the point \(( -2,3)\). To graph the circle, we plot the center \(( -2,3)\) and points \(1\) unit to the right, to the left, above and below the point \(( -2,3)\), as shown in Figure 36.