Given that sinθ=13 and cosθ<0, find the exact value of each of the remaining five trigonometric functions.
Solution We begin by solving the identity sin2θ+cos2θ=1 for cosθ. sin2θ+cos2θ=1cos2θ=1−sin2θcosθ=±√1−sin2θ
Because cosθ<0, we choose the negative value of the radical, and use the fact that sinθ=13. cosθ=−√1−sin2θ=↑sinθ=13−√1−19=−√89=−2√23
A-34
The values of sinθ and cosθ are now known, so we use the quotient and reciprocal identities to obtain tanθ=sinθcosθ=13−2√23=−12√2=−√24cotθ=1tanθ=−2√2secθ=1cosθ=1−2√23=−32√2=−3√24cscθ=1sinθ=113=3