If sinA=45, π2<A<π, and sinB=−2√5=−2√55, π<B<3π2, find the exact value of:
(a) cosA
(b) cosB
(c) cos(A+B)
(d) sin(A+B)
Solution (a) We use a Pythagorean identity to find cosA. cosA=↑ A is in quadrant IIcosA<0−√1−sin2A=−√1−(45)2=−√1−1625=−√925=−35
(b) We also find cosB using a Pythagorean identity. cosB=−√1−sin2B=−√1−45=−√15=−√55
(c) We use the results from (a) and (b) and a sum formula to find cos(A+B). cos(A+B)=cosAcosB−sinAsinB=(−35)(−√55)−(45)(−2√55)=11√525
(d) We use a sum formula to find sin(A+B). sin(A+B)=sinAcosB+cosAsinB=(45)(−√55)+(−35)(−2√55)=2√525