Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 5Using Trigonometry Identities

If sinA=45, π2<A<π, and sinB=25=255, π<B<3π2, find the exact value of:

(a) cosA

(b) cosB

(c) cos(A+B)

(d) sin(A+B)

Solution(a) We use a Pythagorean identity to find cosA. cosA= A is in quadrant IIcosA<01sin2A=1(45)2=11625=925=35

(b) We also find cosB using a Pythagorean identity. cosB=1sin2B=145=15=55

(c) We use the results from (a) and (b) and a sum formula to find cos(A+B). cos(A+B)=cosAcosBsinAsinB=(35)(55)(45)(255)=11525

(d) We use a sum formula to find sin(A+B). sin(A+B)=sinAcosB+cosAsinB=(45)(55)+(35)(255)=2525