Find any vertical asymptote(s) of the graph of \(f(x)=\dfrac{x}{(x-3)^{2}}\).
So, \(x=3\) is a vertical asymptote of the graph of \(f\).
\(\underrightarrow{x~\hbox{approaches 3 from the left}}\) | \(\underleftarrow{x~\hbox{approaches 3 from the right}}\) | ||||||||
---|---|---|---|---|---|---|---|---|---|
\(x\) | \(2.9\) | \(2.99\) | \(2.999\) | \(\ \rightarrow \) | 3 | \(\leftarrow\) | \(3.001\) | \(3.01\) | \(3.1\) |
\(f( x) =\dfrac{x}{(x-3)^{2}}\) | \(290\) | \(29{,}900\) | \(2{,}999{,}000\) | \(f(x)\) becomes unbounded | \(3{,}001{,}000\) | \(30{,}100\) | \(310\) |
120
Figure 52 shows the graph of \(f( x) =\dfrac{x}{( x-3)^{2}}\) and its vertical asymptote.