Processing math: 0%

EXAMPLE 6Finding a Limit at Infinity

Find lim.

Figure 58 \lim\limits_{x\rightarrow \infty } R(x)=\infty

SolutionR( x) =\dfrac{5x^{4}-3x^{2}}{2x^{2}+1} is a rational function defined for all real numbers. Find the limit by dividing each term of the numerator and the denominator by the term with the highest power of x that appears in the denominator, in this case, 2x^{2}. Then \begin{eqnarray*} \lim\limits_{x\rightarrow \infty }\dfrac{5x^{4}-3x^{2}}{2x^{2}+1} \underset{\underset{\underset{\color{#0066A7}{\hbox{and denominator by \(2x^{2}\)}}}{\color{#0066A7}{\hbox{Divide the numerator}}}}{\color{#0066A7}{\uparrow}}}{=}\lim\limits_{x\rightarrow \infty }\dfrac{ \dfrac{5x^{4}-3x^{2}}{2x^{2}}}{\dfrac{2x^{2}+1}{2x^{2}}}=\lim\limits_{x \rightarrow \infty }\dfrac{\dfrac{5x^{2}}{2}-\dfrac{3}{2}}{1+\dfrac{1}{2x^{2} }}=\infty \end{eqnarray*}

because \dfrac{5x^{2}}{2}-\dfrac{3}{2} \rightarrow \infty and 1+\dfrac{ 1}{2x^{2}} \rightarrow 1 as x\rightarrow \infty .