Use the ϵ-δ definition of a limit to prove lim.
Solution Given any \epsilon \gt0, we must show there is a number \delta \gt0 so that \begin{equation*} \hbox{whenever }\quad 0 \lt \vert x-(-1) \vert \lt \delta \qquad \hbox{then }\vert ( 1-2x) -3\vert \lt \epsilon \end{equation*}
The idea is to find a connection between \vert x-(-1)\vert =|x+1|\ and \vert ( 1-2x) -3\vert . Since \begin{equation*} \vert (1-2x)-3\vert =\vert -2x-2\vert = \vert -2(x+1)\vert = \vert -2\vert \cdot \vert x+1\vert =2\vert x+1\vert \end{equation*}
we see that for any \epsilon >0, \begin{equation*} \hbox{whenever}\quad \vert x-(-1)\vert =\vert x+1\vert \lt \dfrac{\epsilon }{2}\qquad \hbox{ then }\vert (1-2x)-3\vert \lt \epsilon \hbox{ } \end{equation*}
133
That is, given any \epsilon \gt 0 there is a \delta,\delta =\dfrac{\epsilon}{2}, so that whenever 0 \lt \vert x-(-1)\vert \lt \delta, we have \vert (1-2x)-3\vert \lt \epsilon . This proves that \lim\limits_{x\rightarrow -1}(1-2x)=3.